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Abstract

Background: Predictive algorithms can have large impacts on people’s lives as they are used
for making increasingly high stakes decisions in society. It is therefore of paramount importance
that algorithms produce fair predictions for individuals regardless of gender, sex, race, and other
sensitive characteristics. Consequently, fair machine learning is an active and quite new field
of research with many definitions of fairness. However, it is often mathematically impossible to
satisfy all these fairness definitions simultaneously. Optimizing for one criterion can exacerbate
unfairness with respect to another, and there is hence a need for performing comprehensive fair-
ness analysis taking more than one criterion into account.
Objective: The aim of the project is to design and construct a toolkit for analyzing fairness of
predictive algorithms enabling model developers to perform broad and nuanced assessments of
fairness considering several fairness criteria.
Methods: The toolkit, named BiasBalancer, is implemented in Python and is aimed at devel-
opers of binary predictive algorithms. BiasBalancer is designed in three levels and introduces
a new summary fairness metric, a comprehensive overview of a wide variety of existing fairness
criteria, and methods for further in-depth fairness analysis. BiasBalancer is showcased on various
smaller examples, including canonical fairness datasets, and through a medical case study of the
CheXpert dataset.
Results: The analyses of canonical fairness datasets support results from previous fairness anal-
yses while showing the ease of use of BiasBalancer. In the fairness analysis of the CheXpert
dataset, the fairness criteria yield conflicting results from the analysis considering patients’ race.
One criterion suggests discrimination of Whites while another suggests discrimination of Blacks.
Conclusion: Our results show how different types of unfairness interact and highlight the need
for more comprehensive fairness analyses taking several criteria into account. We show how the
toolkit BiasBalancer facilitates such fairness analyses.
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Chapter 1

Introduction

1.1 General Introduction

Advances in machine learning technologies during the last decades have enabled model developers
to build increasingly sophisticated models and algorithms. These models increasingly become
part of our daily lives: We use Google Translate when we’re missing a word in a foreign language,
facial recognition to unlock our smartphones, voice recognition to interact with intelligent home
speakers, and we see recommendations tailored to our profile when shopping online. Predictive
algorithms are also increasingly influencing more high-stake decisions affecting our lives, such as
hiring [Bogen and Rieke, 2018], and who should be granted bail after committing a crime [Angwin
et al., 2016]. Within the medical field, artificial intelligence can now predict diseases such as
skin cancer and pneumonia from medical images on par or even better than experts within the
field [Esteva et al., 2017, Rajpurkar et al., 2017]. Such predictive algorithms are expected to
increasingly aid health professionals when making decisions concerning our health [Bohr and
Memarzadeh, 2020].

When important decisions are made about our lives, we want to be treated fairly and equally
no matter our sensitive attributes such as race, gender, sex, or sexual orientation. The use of
predictive models could improve transparency and fairness in decision-making because decisions
made using models can be monitored and checked to a greater extent than human-made decisions.
However, predictive models heavily depend on real-world datasets, and these datasets are rarely
representative of the population and commonly contain the biases present in our society.

During recent years many examples of discriminative algorithms have been detected, and some
examples have even found their way into the public debate. In [Angwin et al., 2016], ProPublica
described how the COMPAS algorithm, used for predicting the risk of criminals recidivating, was
biased against Black offenders. It has been shown that commercially available facial recognition
systems had lower accuracies for women and non-White faces compared to White men [Klare
et al., 2012]. Twitter admitted that their image cropping system had a preference for showing
White individuals and cropping individuals of other races out of the image [Chowdhury, 2021].
And an algorithm, widely used at U.S. hospitals to choose which patients are given extra care,
was revealed to require that Black patients had to be sicker to be assigned the same score as
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White patients [Obermeyer et al., 2019].

It is evident that the problems with biased algorithms will increase as we become more reliant
on algorithms − if decisive action is not taken to mitigate the bias. In the past years, fairness in
machine learning has grown to a large field of research, and many steps, are taken simultaneously
to ensure or encourage fair machine learning. In April 2021, the European Commission proposed
a legal framework aiming to regulate artificial intelligence to ”minimize risks and discriminatory
outcomes” [Directorate-General for Communications Networks Content and Technology, 2021].
The ongoing public debate and courses in fairness and ethics in machine learning at universities
create hope that the new generation of data and computer scientists are more aware of these
challenges. However, the current literature on fairness in machine learning is overwhelming and
fast-changing while legislation is lagging behind, and best practice is still under discussion. Hence,
tools are needed to aid future model developers in assessing models with respect to fairness.

1.2 Related Work

Many toolkits exist for the purpose of making fairness in machine learning and AI more accessible
and applied by the people involved in deploying predictive models for decision-making. One of
these toolkits is Aequitas [Saleiro et al., 2019]. Aequitas can be accessed through a web tool,
python, or the command line. The purpose of the toolkit is to look at disparities between
subgroups, and it uses the predictions, true labels, and sensitive group attributes to audit the
predictions from a model. Aequitas stands out with great usability, and it is not overwhelming
to navigate. However, the disparity analyses are fairly simple, and the fairness analyses are
only based on the binary predictions and not the scores. Another toolkit is Fairlearn, which also
enables the user to get information about absolute differences or disparities across subgroups [Bird
et al., 2020]. Fairlearn also includes some mitigation algorithms, which can be used by data
scientists to alleviate potential unfairness found in their models. Thus, it has more features
than Aequitas, but it is also less user-friendly as it includes notebooks with usage examples
that are less thorough and accessible than those showcasing Aequitas. The toolkit AI Fairness
360 (AIF360) is perhaps the most comprehensive open-source fairness toolkit currently existing.
AIF360 was originally made by IBM, and it aims to provide a common framework for research
within fairness metrics and mitigation techniques. It includes more than 70 metrics and ten
mitigation algorithms, which can be overwhelming to navigate, but to aid users, they have created
an interactive experience to get started [Bellamy et al., 2019]. The authors of [Johnson et al.,
2020] have created Fairkit-learn, which combines AIF360 with the classic python machine learning
package scikit-learn. Fairkit-learn focuses on incorporating model selection with considerations
of fairness and accuracies, enabling the user to make informed choices about the trade-offs given
chosen metrics. FairKit-learn includes a wrapper such that the toolkit can be extended to handle
models not originating from scikit-learn. Since neural networks have become a standard modeling
approach, it is easy to imagine a potential user’s need to extend the toolkit such that it also
considers, e.g., a PyTorch model. A common feature of the above-mentioned toolkits is that the
user typically specifies a privileged group working as the reference to which the other groups
are compared. In AIF360, this is described as a group which historically has been put at an
advantage in a given situation, and this choice will therefore be task specific.
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1.3 Thesis Aim and Motivation

What constitutes a fair prediction algorithm depends on the context, and it may often be the
case that several different fairness criteria are relevant in a given setting. However, some of the
most central fairness criteria in machine learning have been shown to exclude one another under
only mild assumptions [Barocas et al., 2019,Pleiss et al., 2017]. This means that the fair model,
which is fair with respect to all relevant criteria, often doesn’t exist. Therefore, creating fair
models inevitably involves a trade-off between different notions of fairness. A common practice
is to choose only one of the relevant fairness criteria in the given scenario and ensure absolute
fairness with respect to this criterion. However, optimizing with respect to one fairness criterion
will often come at a price of increasing unfairness with respect to other criteria. We believe
that a model developer is only able to make an informed choice about the fairness trade-off in a
predictive model after being presented to and thinking thoroughly about the consequences of the
predictions according to a range of fairness definitions. This motivates the aim of the project:

The thesis aims to design and construct a toolkit for analyzing fairness of predic-
tive algorithms. The toolkit should facilitate a comprehensive and nuanced fairness
analysis, emphasizing a broad assessment of several criteria and providing an easily
interpretable overview of fairness.

Moreover, this project showcases the use of the toolkit on a wide range of example datasets,
including an in-depth fairness analysis of a predictive algorithm in a medical setting.

The thesis is structured in 7 chapters, and you are currently reading the first. In chapter 2 we
introduce the essential observational fairness criteria along with a presentation of how they relate
to one another. The chapter also includes a brief introduction to the predictive models used in the
project. Chapter 3 describes the example datasets and predictive models. The fairness toolkit,
BiasBalancer, is presented in chapter 4, which also includes examples of the use of the toolkit.
The medical case study is found in chapter 5, where we use BiasBalancer to analyze unfairness
with respect to race and sex in a model predicting the medical condition cardiomegaly from
radiographs. Finally, the results and toolkit are discussed and concluded in chapter 6 and 7.
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Chapter 2

Theory

In this chapter, we present the theory relevant to this thesis. First, section 2.1 presents the
so-called confusion matrix and the rates calculated based on it, such as the false positive rate.
Then follows a section (section 2.2) on how these rates can be used to define fairness criteria
and how those fairness criteria interact. Finally, the predictive models used in this thesis are
explained in section 2.3.

2.1 Confusion matrix

Many fairness criteria evaluate the fairness of an algorithm based on how observations are classi-
fied or predicted relative to their actual or true class. These properties of the classifier are neatly
summarized in a confusion matrix. In this thesis, we will only consider binary classification
problems, and table 2.1 shows the layout of a confusion matrix for a binary classification prob-
lem. True positives (TP ) and false positives (FP ) are the number of true observations that were
predicted to be true and false respectively, while true negatives (TN) and false negatives (FN)
are the number of false observations that were predicted to be false and true respectively. The
two left-most and the two top cells contain the marginal values calculated as the sum of each row
or column, respectively. The number of predicted positives and predicted negatives are denoted
by PP and PN , respectively, while the number of actual positives and actual negatives are de-
noted by P and N . Since we use N to denote the number of actual negatives, we will, contrary
to more common notation, use n to denote the number of observations in total. We will use the
notation introduced in table 2.1 throughout this report.
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Table 2.1: Confusion matrix for a binary classification problem.

From the values in the confusion matrix the following rates to describe the performance of a
classifier can be defined:

• True positive rate: TPR =
TP

TP+FN
=
TP
P

• False negative rate: FNR =
FN

TP+FN
=
FN
P

• True negative rate: TNR =
TN

TN+FP
=
TN
N

• False positive rate: FPR =
FP

TN+FP
=
FP
N

The true positive rate is sometimes called the recall or sensitivity, and the true negative rate is
also called the specificity. The trade-off between the true positive rate and false positive rate
is easily visualized in a so-called ROC curve (Receiver operating characteristic curve). A ROC
curve plots the true positive rate against the false positive rate when varying the threshold used
for the decision.

In the four rates defined above, the denominator is the number of observations belonging to
either the actual positive or actual negative class. Similarly, four other measures can be defined
where the denominator is the number of observations predicted to be positive or negative:

• Positive predictive value: PPV =
TP

TP+FP
=

TP
PP

• False discovery rate: FDR =
FP

TP+FP
=

FP
PP

• Negative predictive value: NPV =
TN

TN+FN
=

TN
PN

• False omission rate: FOR =
FN

TN+FN
=

FN
PN

The positive predictive value is also called the precision.

All eight rates defined above come in pairs that share the denominator, and these pairs all sum
to 1:

TPR + FNR = TNR + FPR = PPV + FDR = NPV + FOR = 1 (2.1)

This is easily shown mathematically by adding the two fractions of a pair and simplifying by
letting the denominator and numerator cancel out. These relations mean that, as an example, if
the true positive rate increases, the false negative rate must decrease by the same amount.
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2.2 Observational Fairness Criteria

Observational fairness criteria are a group of fairness criteria based upon properties of the joint
distribution p(X,A, Y, Ŷ ), where Y is the binary target variable, Ŷ is the prediction or classifica-
tion, A are some sensitive/protected attributes, and X are the remaining non-sensitive features.
Thus, given observations from the joint distribution, it is possible to verify if a given predictive
algorithm is fair according to the observational fairness criteria without needing knowledge about
the context in which the algorithm was used [Barocas et al., 2019]. We will briefly touch upon
other types of algorithmic fairness in section 2.2.6.

All of the observational fairness criteria presented in this section can be expressed via statistical
relationships between the three random variables Y, Ŷ and A, i.e. X will not be considered.
Many of the presented observational criteria have several names and different relaxations. Some
of these relaxations are also considered fairness criteria themselves. [Barocas et al., 2019] organize
the criteria into three categories independence, separation and sufficiency. This thesis will use
this terminology while also presenting some of the relaxations within each category alongside
them. The criteria are presented in a setting with only two sensitive groups, but they can easily
be generalized to handle a larger number of groups. Finally, existing synonyms of each criterion
will be presented, aiding the reader to navigate the different terminology within the field.

2.2.1 Summary Table of Criteria

Table 2.2 summarizes the observational fairness criteria such that they are easily compared. The
table works as a reference to what the different criteria enforce. Each criterion is presented with
one or more references for further reading and understanding, and they will be elaborated in the
coming sections. The table also includes a collection of other names for the criteria, which we
have encountered in our process. These names are not necessarily mentioned in the references
supplied in the table, but they make it possible to use the table if the user is already familiar
with another name than the one we have chosen to use.

We summarize what each criterion enforces by using the group-wise false negative rate (FNR),
false positive rate (FPR), false discovery rate (FDR), false omission rate (FOR) and the accep-
tance rate PP

n
. The rates have been presented in section 2.1. Let FNR be the false negative

rate based on all predictions, the false negative rate for a subgroup a, based on their sensitive
attributes, is then defined as FNRa. Similar notation is used for all rates.
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Fairness Criterion Enforces Reference Other Names

Independence PPa

na
=
PPb

nb
[Barocas et al., 2019, p. 46]

Statistical Parity,

Demographic Parity,

Group Fairness

Sufficiency

FORa = FORb

and

FDRa = FDRb

[Barocas et al., 2019, p. 50]

Predictive Rate Parity,

Conditional Use

Accuracy Parity

Predictive Parity
•

FDRa = FDRb [Verma and Rubin, 2018] Outcome Test

Separation

FPRa = FPRb

and

FNRa = FNRb

[Hardt et al., 2016],

[Barocas et al., 2019, p. 50]

Equalized Odds,

Positive Rate Parity,

Disparate Mistreatment,

Conditional Procedure

Accuracy Equality,

FPR-balance
⋆

FPRa = FPRb [Verma and Rubin, 2018] Predictive Equality

Equal Opportunity
⋆

FNRa = FNRb
[Hardt et al., 2016],

[Barocas et al., 2019, p. 50]
FNR-balance

Table 2.2: Summary of Observational Fairness Criteria. ⋆ indicates a relaxation of separation
and • indicates a relaxation of sufficiency. The subscript indicates subgroups based on pro-
tected attributes. Abbreviations: PP : Predicted positives, FPR: False positive rate, FNR: False
negative rate, FDR: False discovery rate, FOR: False omission rate, n: number of observations.

2.2.2 Independence

Alternative names: Demographic parity, equal acceptance rate, statistical parity, group fairness,
benchmarking.

The first observational criterion, independence, requires the predicted probability to be inde-
pendent of the sensitive attributes, i.e., A ⊥ Ŷ . This means that the predicted probability of
belonging to the positive class must be the same for all sensitive groups A or, equivalently,
that the share of predicted positives is equal for all groups [Barocas et al., 2019]. Defin-
ing Pa(Ŷ = c) ∶= P (Ŷ = c ∣ A = a), independence can be expressed as

Pa(Ŷ = 1) = Pb(Ŷ = 1). (2.2)

For a binary classifier satisfying independence, the probability of belonging to the negative class
will also be equal across groups because P (Ŷ = 1) + P (Ŷ = 0) = 1. It is worth noting that a
perfect predictor, which always predicts Ŷ = Y , does not fulfill independence if Y and A are
correlated. Also, independence does not impose any constraints on which observations from each
sensitive group should be predicted to be in the positive class. Consequently, a classifier can be
deemed fair in terms of independence even if the accuracy for one group is much lower than for
another [Hardt et al., 2016].
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2.2.3 Separation

Alternative names: Equalized odds, disparate mistreatment, conditional procedure accuracy equal-
ity

The second observational criterion, separation, allows for correlation between the sensitive at-
tributes and the predictions, but only if the correlation is justified by the target variable [Hardt
et al., 2016]. Separation requires the classification and the sensitive attributes to be independent
conditioned on the target variable:

A ⊥ Ŷ ∣ Y. (2.3)

Written in terms of probabilities the classifier must satisfy

Pa (Ŷ = j ∣ Y = i) = Pb (Ŷ = j ∣ Y = i) , i ∈ {0, 1}, j ∈ {0, 1}, j ≠ i. (2.4)

This enforces the false negative rate and false positive rate to be equal across sensitive subgroups
for each rate. Moreover, because the rates come in pairs (eq. (2.1)), it also yields equality of the
true positive rate and true negative rate across subgroups.

Contrary to the independence criterion, a perfect classifier will always satisfy separation. Given
the scores from a classifier, it is possible to visualize how difficult it would be to satisfy separation
by plotting a ROC curve separately for each class. The classifier satisfies separation if the
threshold is chosen to be where the ROC curves intersect because then true positive rate (TPR)
and false positive rate (FPR) will be equal for all groups. However, the ROC curves for the
sensitive groups are not guaranteed to intersect. In that case, separation can be achieved by
using randomized thresholds [Hardt et al., 2016].

There exist two relaxations of separation, which are used as fairness criteria themselves. These
are false positive error rate balance and equal opportunity.

False Positive Error Rate Balance

Alternative names: Predictive equality

As the name suggests, the false positive error rate balance (FPR-balance) only requires a balance
in the false positive rate (or, equivalently, true negative rate) for sensitive subgroups [Verma and
Rubin, 2018]. In terms of probability, it implies that

Pa(Ŷ = 1 ∣ Y = 0) = Pb(Ŷ = 1 ∣ Y = 0), (2.5)

which means that it should be equally probable for observations truly belonging to the negative
class to be misclassified as positive regardless of the state of the sensitive attributes A.

Equal opportunity

Alternative names: False Negative Error Rate Balance
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Analogous to the false positive error rate balance, equal opportunity (or false negative error rate
balance) only requires a balance in the false negative rate (or equivalently true positive rate)
for groups with different values in their sensitive attributes [Hardt et al., 2016]. In terms of
probability, it implies that

Pa(Ŷ = 0 ∣ Y = 1) = Pb(Ŷ = 0 ∣ Y = 1), (2.6)

which means that it should be equally probable for observations truly belonging to the positive
class to be misclassified as negative regardless of the state of the sensitive attributes A.

2.2.4 Sufficiency

Alternative names: Predictive rate parity, conditional use accuracy equality.

The third and last observational fairness criterion to be considered is sufficiency. Sufficiency
requires the target, Y , and sensitive attributes, A, to be independent conditioned on the classi-
fication, Ŷ [Barocas et al., 2019]. This can in shorthand notation be written as

Y ⊥ A ∣ Ŷ , (2.7)

or equivalently in terms of probabilities:

Pa(Y = j ∣ Ŷ = i) = Pb(Y = j ∣ Ŷ = i), i ∈ {0, 1}, j ∈ 0, 1, j ≠ i. (2.8)

This enforces the false discovery rate and the false omission rate must be equal across the sensitive
groups, i.e., FDRa = FDRb and FORa = FORb.

Sufficiency can be achieved through calibration by group. In fact, calibration by groups implies
sufficiency [Barocas et al., 2019]. A classifier with scores R ∈ [0, 1] is calibrated by group if it
satisfies

P (Y = 1∣R = r,A = a) = r ∀a ∈ A,∀r ∈ [0, 1]. (2.9)

Hence a classifier, which is calibrated by group, will for all groups have scores, where 100 ⋅ r%
of observations with predicted score r is expected to belong to the positive class. Equation (2.9)
is a stronger condition than equation (2.8) and classifiers satisfying calibration by group will
therefore also satisfy sufficiency.

Predictive Parity

Alternative name: Outcome test.

Predictive parity is a relaxation of sufficiency, where equality across subgroups is not required
for the false omission rate [Verma and Rubin, 2018]. Thus, predictive parity only requires

Pa(Y = 0 ∣ Ŷ = 1) = Pb(Y = 0 ∣ Ŷ = 1), (2.10)

which means there must be balance in false discovery rates (or, equivalently, in the positive
predictive value).
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Figure 2.1: Each corner of the triangle represents one of three observational fairness criteria. The
triangle connecting two corners contains the assumptions necessary to carry out a proof showing
that both observational fairness criteria cannot be fulfilled at the same time.

2.2.5 Relationships Between Criteria

The observational fairness criteria presented so far are all characterized by requiring different
properties of the joint distribution of the random variables A, Y and Ŷ . However, the properties
required are non-trivial and adopting any of the criteria, (i.e., independence eq. (2.2), separation
eq. (2.4), or sufficiency eq. (2.8)), as a hard constraint will constrain the joint distribution
in a manner that only degenerate cases remain if one imposed an additional one as a hard
constraint [Barocas et al., 2019, chapter 3].

For any pair of the three observational criteria, the triangle shown in Figure 2.1 depicts a scenario
where only one of the two criteria can be satisfied. Each of the corners represents an observational
criterion and the colored boxes each indicate a scenario where, given the assumptions inside, one
cannot satisfy both of the criteria in the corners. Therefore, the algorithm owner is forced to
choose a single corner, and thereby a single metric, if the fairness criterion is to be enforced using
hard constraints.

This section will consider each combination of pairs of the criteria and prove why both cannot
be fulfilled at the same time (proofs based on [Barocas et al., 2019]). We will moreover argue
why the assumptions in each of the three scenarios are reasonable.

Independence and Sufficiency

The green scenario in figure 2.1 has only one assumption: The sensitive attributes, A, and the
target variable, Y , are not independent. This assumption is often fulfilled as it is very common
that the target variable is correlated with the sensitive attribute. In the case of a binary target,
it simplifies to not having the same base rate of actual positives across groups. Given this
assumption, it is not possible to obtain both independence and sufficiency.
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Proof. If both sufficiency (A ⊥ Y ∣ Ŷ ) and independence (A ⊥ Ŷ ) are satisfied, it implies that

A ⊥ Ŷ ∧ A ⊥ Y ∣ Ŷ ⇒ A ⊥ Y, (2.11)

and the contrapositive yields

A á Y ⇒ A á Ŷ ∨ A á Y ∣ Ŷ . (2.12)

From the latter, it can be concluded that, given the assumption (the target variable is not
independent of the sensitive attribute), it is not possible to satisfy both sufficiency and indepen-
dence.

Independence and Separation

The blue scenario in figure 2.1 includes three assumptions: Y á Ŷ , A á Y and Y ∈ {0, 1}. In this
thesis, we only consider binary classification, and we have previously argued why it is reasonable
to assume that the target variable is correlated with the sensitive attributes. Moreover, it is
reasonable to assume that any relevant classifier would yield a correlation between the predictions
and the target.

Proof. To show that independence and separation cannot both be satisfied under the three
assumptions, we need to show:

A á Y ∧ Ŷ á Y ⇒ A á Y ∨ Ŷ á A ∣ Y. (2.13)

Taking the contrapositive of (2.13) gives the equivalent expression

A ⊥ Y ∧ Ŷ ⊥ A ∣ Y ⇒ A ⊥ Y ∨ Ŷ ⊥ Y, (2.14)

which we choose to show instead. Using the law of total probability, we can write P (Ŷ ∣ A) as

P (Ŷ ∣ A) =∑
y

P (Ŷ ∣ A, Y = y)P (Y = y ∣ A). (2.15)

Applying the assumptions in the antecedent of eq. (2.14) to the equation above gives

P (Ŷ ) =∑
y

P (Ŷ ∣ Y = y)P (Y = y ∣ A). (2.16)

By using the law of total probability, we can also express P (Ŷ ) in another way as

P (Ŷ ) =∑
y

P (Ŷ ∣ Y = y)P (Y = y). (2.17)

Setting the two expressions for P (Ŷ ) in equations (2.16) and (2.17) equal gives

∑
y

P (Ŷ ∣ Y = y)P (Y = y ∣ A) =∑
y

P (Ŷ ∣ Y = y)P (Y = y). (2.18)

When Y is binary, the above equation is only satisfied when either P (Y ∣ A) = P (Y ), i.e. Y ⊥ A,
or when P (Ŷ ∣ Y = 0) = P (Ŷ ∣ Y = 1), i.e. Y ⊥ Ŷ . Hence, we have shown that when both
independence and separation holds, then one of the assumptions does not hold (eq. (2.14)). This
is the contrapositive of what we needed to prove (eq.(2.13)).
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Separation and Sufficiency

Finally, the purple triangle in figure 2.1 shows that when A á Y and the joint distribu-
tion p(A, Y, Ŷ ) is always positive, sufficiency and separation cannot hold at the same time.
This scenario is quite common because the assumption about the joint distribution is equivalent
to having a strictly positive number of true positives, true negatives, false positives, and false
negatives for all of the sensitive groups.

Proof. We would like to show that

A á Y ⇒ A á Y ∣ Ŷ ∨ A á Ŷ ∣ Y. (2.19)

Using a property of conditional independence, which only holds when all events in the joint
distribution have positive probability, [Wasserman, 2004, Theorem 17.2], we have that

A ⊥ Ŷ ∣ Y ∧ A ⊥ Y ∣ Ŷ ⇒ A ⊥ (Y, Ŷ ) ⇒ A ⊥ Ŷ ∧ A ⊥ Y. (2.20)

Taking the contrapositive gives (2.19), which was what we needed to show.

Quantifying Incompatibility of Criteria

The proofs given in the previous section show how the three criteria mutually exclude each other
when enforced as hard constraints. It leads to the natural question of to what degree they
can’t co-exist. [Liu et al., 2019] show that unconstrained learning naturally leads to predictions
satisfying the sufficiency criterion and that this results in larger violations of the independence
and separation criteria.

The considered fairness criteria can be expressed in terms of expectations [Liu et al., 2019].
Consider the score function, f(X), mapping the features in X to [0, 1]. Sufficiency (presented in
section 2.2.4) requires equal probability of belonging to the true class given the predicted class
across two sensitive groups a and b. In terms of the expectation, it can be written as:

Sufficiency: E [Y ∣ f(X)] = E [Y ∣ f(X), A] , (2.21)

i.e., the expectation of Y conditioned on the predicted score should not gain any additional
information by also conditioning on the sensitive attribute.

The fairness criterion separation (presented in section 2.2.3) requires equal probability of being
classified as a certain class given the actual class across two sensitive groups a and b. Using
expectations, it can be reformulated as:

Separation: E [f(X) ∣ Y ] = E [f(X) ∣ Y,A] , (2.22)

i.e., the expectation of the score function f(X) conditioned by the target Y and sensitive attribute
A, should not gain any information by the conditioning on A.
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The fairness criterion independence (presented in section 2.2.2) requires equal probability of being
classified as the positive class across two sensitive groups a and b. In terms of the expectation,
independence can be written as:

Independence: E [f(X)] = E [f(X) ∣ A] , (2.23)

i.e., conditioning on the sensitive attribute should not affect the expected value of the score
function f(X).

The expectation of the difference between the left hand side and right hand side in equations
(2.21), (2.22), and (2.23) is used to quantify how much the three criteria are violated. These ex-
pectations define the sufficiency gap, separation gap, and independence gap denoted by suff(A),
sepf(A), and indf(A) respectively. Explicitly these can be formulated as

suff(A) = E [∣E[Y ∣ f(X)] − E[Y ∣ f(X), A]∣] (2.24)

sepf(A) = EY,A[∣E[f(X) ∣ Y,A] − E[f(X) ∣ Y ]∣] (2.25)

indf(A) = EA[∣E[f(X) ∣ A] − E[f(X)]∣]. (2.26)

Using these formulations [Liu et al., 2019] present theorems specifying upper and lower bounds for
the gaps under certain conditions. We will present the theorems and argue why their assumptions
are fulfilled in our setting. We refer to [Liu et al., 2019] for a more rigorous explanation and
proofs of theorems.

Given a loss function ` ∶ [0, 1]×{0, 1} and a score function f , the population risk L(f) is defined
as

L(f) = E [`(f(X), Y )] . (2.27)

In [Liu et al., 2019] they compare the score function f(X) with the calibrated Bayes score f
B

,
which serves as a benchmark. The calibrated Bayes score is defined as

f
B(x, a) ∶= E [Y ∣ X = x,A = a] . (2.28)

The Bayes score satisfies sufficiency and is the perfect predictor if Y is deterministic given X
and A. The population risk of the calibrated Bayes score is then defined as L∗ ∶= L(fB) =
E [`(fB(X,A), Y )]. The excess risk of the model, f , is defined as L(f)−L∗. The main theorem

stated in [Liu et al., 2019] is

suff(A) ≤ 4

√
L(f) − L∗

κ ≤ O (
√
L(f) − L∗) , (2.29)

which implies that the sufficiency gap is upper bounded by the excess risk. This means that a
better model, i.e., when L(f) becomes more similar to L(fB), will have a smaller sufficiency gap.
The theorem relies on some assumptions about the loss function `(f, Y ), which also determines
the value of κ. Furthermore, [Liu et al., 2019] proves that the logistic loss function

`(f, Y ) = −(Y log f + (1 − Y ) log(1 − f)) (2.30)

satisfies the assumptions required for equation (2.29) to hold with κ = 2/ log 2. The logistic loss is
also called the binary cross entropy loss and is often used to train binary classifiers in supervised
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learning. The key takeaway is that the current framework of supervised learning using logistic
loss favors the fairness criterion Sufficiency because better models will yield a smaller sufficiency
gap.

In fact, [Liu et al., 2019] states that the current framework for supervised learning disfavors the
other fairness criteria. They show that, under the same assumptions as in the previous theorem,
the separation gap, sepf is lower bounded by

sepf̂ ≥ CfB ⋅QA − 2

√
L(f) − L∗

κ , (2.31)

where CfB and QA are constants specific to the classification problem. Using q ∶= P (Y = 1) and
qA ∶= P (Y = 1 ∣ A), the constants can defined as

QA = E[∣ q − qA ∣] (2.32)

CfB =
ED[Var[Y ∣ X,A]]

Var[Y ] . (2.33)

Thus, QA is the L1-variation in base rates among sensitive groups, and CfB is the intrinsic noise
level of the prediction problem. The intrinsic noise level is zero if the target Y is deterministic
given X and A. Equation (2.31) therefore implies that a better model, i.e., with a smaller excess
risk, increases the lower bound on the separation gap. Thus, in order to satisfy the separation
criterion, it could be necessary to have a larger excess risk to compensate for differences in base
rates across sensitive groups.

A similar result holds for the independence gap, indf(A), which is lower bounded by

indf̂(A) ≥ QA − 2

√
L(f) − L∗

κ . (2.34)

Thus, if the base rates of positive outcomes vary across sensitive groups, the excess risk needs to
be larger in order to make the independence gap smaller and thereby come closer to satisfying
the independence fairness criterion.

2.2.6 Types of Fairness in Machine Learning

The presented fairness criteria all belong to the category Group Fairness within fair machine
learning research. These are also known as Statistical Measures, and they are based on parity
between people belonging to different sensitive subgroups. The fairness criterion independence,
which sometimes is referred to as simply ”group fairness”, only relies on the predicted target,
while the remaining presented criteria depend on both the predicted and actual value of the
target.

Another approach to fairness in machine learning is Individual Fairness, which has been created
on the notion that people who are similar in task-relevant features should receive similar predic-
tions. An example of this is the similarity-based fairness metric created by the authors of [Dwork
et al., 2012]. In their article, they argue that the group fairness metric independence is insuf-
ficient by itself and that the two notions of fairness might be conflicting in cases where similar
individuals are assigned different outcomes as a result of trying to satisfy the group fairness cri-
terion. Even though the notion of similar people being treated similarly might sound appealing,
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this method has a major drawback. Individual fairness heavily relies on a task-specific similarity
metric, which expresses ”the ground truth or at least, when the ground truth is unavailable, the
metric may reflect the “best” available approximation as agreed upon by society” [Dwork et al.,
2012, p. 1]. Such a metric is very hard to come by in practice, and in the setting of a fairness
toolkit, it would require us to enable the user of our toolkit to choose such similarity measures.
Thus, we have chosen not to consider individual fairness in this thesis.

Besides group fairness and individual fairness, there exist fairness definitions based on causal
reasoning. Causal reasoning is a conceptual and technical framework for addressing questions
about the effect of hypothetical actions or interventions [Barocas et al., 2019]. The fairness
definitions are defined using a causal graph modelling the relationship between the features,
sensitive attributes, and outcome. The causal fairness framework is a large area of research, and
in order to limit the scope of this thesis, we have chosen not to work further with causality and
fairness.

Lastly, we only consider purely algorithmic fairness in this thesis. We will therefore not dive into
higher-level ethical fairness questions such as the question of whether algorithms should be used
for decision-making at all.

2.3 Predictive Modelling

In this thesis, we will use three different predictive models to create example predictions to
perform the fairness analyses on. The models are logistic regression, a feed-forward neural
network, and DenseNet, which is a specific type of convolutional neural network. We will briefly
describe each of the models in this section.

2.3.1 Logistic Regression

Logistic regression is a widely used classification technique based on a probabilistic model for
classification. Logistic regression extends to multiple classes but in its simplest form it is often
used for binary classification. This thesis only presents the binary logistic regression since only
binary prediction problems are considered. Given a binary classification problem with a D-
dimensional feature observation xi ∈ RD and a target Y ∈ {0, 1}, the logistic regression models
the observation as Bernoulli distributed with probability pi, where

pi = P (Y = 1 ∣ X = xi). (2.35)

Because pi is constrained to be in the interval [0, 1], it cannot be modelled directly with a
linear model. Instead a link function F is chosen such that the probability pi can be modelled
by pi = F (φTxi). The link function used in logistic regression is the sigmoid function, which
yields the expression

pi = σ(φTxi) =
1

1 + e−φ
T xi

. (2.36)

The choice of link function means that the logit of pi can be modelled linearly with respect to xi:

σ
−1(pi) = log

pi
1 − pi

= φ
T
xi, (2.37)
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where the inverse of the sigmoid function is the logit function, i.e., σ
−1(pi) = log pi

1−pi
.

The model parameters, φ, are estimated using maximum likelihood estimation. Let yi be the
value of the target for observation xi then for n observations, the likelihood of the model can be
written as

L(φ) =
n

∏
i=1

σ(φTxi)yi ⋅ (1 − σ(φTxi))1−yi . (2.38)

Taking the logarithm, the log likelihood becomes

`(φ) =
n

∑
i=1

(yi log σ(φTxi) + (1 − yi) log(1 − σ(φTxi))) . (2.39)

The model is fitted by maximizing the log likelihood

φ
∗
= max

φ
`(φ). (2.40)

Due to the sigmoid function, the log likelihood is non-linear in φ, which means that we do not
have a closed-form solution to the optimization problem, but need optimization methods for
non-linear optimization problems [Hastie et al., 2009].

Logistic regression can be regularized using Lasso or Ridge regularization [Hastie et al., 2009,
sec. 4.4.4]. The regularization is done by subtracting the norm of the weights from the log
likelihood. The norm is scaled by a non-negative hyper-parameter, λ, called the regularization
strength, which controls the degree of regularization. Lasso regularization uses the L1-norm, and
it is often used to encourage sparsity in the weights. Ridge regularization uses the L2-norm and
encourages shrinkage of the weights. Solving the Ridge regularized logistic regression consists of
solving the optimization problem

φ
∗
Ridge = max

φ
`(φ) − λ∣∣φ∣∣22. (2.41)

Similarly the Lasso regularized version of the logistic regression is fitted by solving

φ
∗
Lasso = max

φ
`(φ) − λ∣∣φ∣∣1. (2.42)

2.3.2 Neural Networks

Neural networks have lately become a popular choice for modelling data where simple linear
models are not flexible enough to capture the nature of the data. Thus, making them very
relevant to consider in this thesis.

Feed Forward Neural Network

A feed forward neural network is composed of a number of layers, where the output of the
previous layer is the input to the next layer.
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Consider the first layer of the neural network. Let [x1, . . . , xD] ∈ RD be an observation from the

feature matrix X ∈ Rn×D, and let the first layer of the neural network consist of M hidden units.
The hidden units are also called the neurons of the neural network. To compute these, one must
first compute the activation aj and then pass it through a non-linear activation function. The
activations of the first hidden layer are computed as linear combinations of the input

a
(1)
j =

D

∑
i=1

w
(1)
ji xi + w

(1)
j0 , j = 1 . . .M (2.43)

where w
(1)
ji and w

(1)
j0 are said to be the weights and biases of the first layer. This gives a total

of D ⋅M +M weights in the first layer. The hidden units, zj , are computed by passing the
activations through a non-linear activation function h(⋅)

z
(1)
j = h(a(1)j ), j = 1 . . .M, (2.44)

which gives the hidden units in the first hidden layer. Typical choices of activation functions are
the hyperbolic tangent (tanh), the sigmoid (σ), and the Rectified Linear Unit (ReLU).

This process is repeated for each layer of the network using the hidden units of the previous
layer as the input to the next layer. Finally, the output activation(s) are calculated as a linear
combination of the units in the last hidden layer. The output activations are then passed through
an activation function to obtain the final output of the neural network. The number of output
units and the final activation function depend on the nature of the classification or regression
task at hand. For binary classification, a single output unit and the sigmoid activation function
is a common choice [Bishop, 2006].

Figure 2.2 shows an example of the architecture of a feed forward neural network with in-
put [x1, . . . , x6], two hidden layers, and a single output activation. The hidden layers have four
and three hidden units respectively. Neural networks are non-linear because of the non-linear
activation functions used when computing the hidden units. The networks become linear if all
activation functions are linear. Moreover, a feed forward neural network with no hidden lay-
ers, the sigmoid as output activation function, and a binary output is equivalent to the logistic
regression presented in section 2.3.1.

A feed forward neural network is trained by minimizing a specified loss function. For binary
classification when using the sigmoid as the final activation function, the binary cross entropy
loss is typically used.

For n observations with labels t1, . . . , tN and scores y1, . . . , yN , the loss is defined as

E(w) = −
n

∑
n=1

(tn ln(yn(w)) + (1 − tn) ln(1 − yn(w))). (2.45)

The objective of the training is to optimize the weights, w, such that the loss function is mini-
mized. This can be done using gradient descent, which iteratively takes a step in the direction
of the negative gradient

w
τ+1

= w
τ
− η∇E(wτ), (2.46)

where η denotes the step size (also called the learning rate). The gradient is calculated using
a method called backpropagation, which analytically calculates the gradient of the loss function
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Figure 2.2: Example of an architecture of a simple 3-layer feed forward neural network. The
circles in the input layer represents an input observation [x1, . . . , x6]. The circles in the hid-
den layers represent hidden units. The first hidden layer thus consist of four hidden units i.e.

z
(1)
1 , z

(1)
2 , z

(1)
3 and z

(1)
4 . Finally there is an output layer with a single neuron. Hence, this neural

network outputs a single output. Figure from [Nielsen, 2015].

with respect to the weights by sequentially applying the chain rule backward in the network
starting from the last layer [Nielsen, 2015, Chap. 2]. A faster-converging updating algorithm,
called stochastic gradient descent (SGD), is obtained by calculating the gradient over smaller
batches of the dataset, such that steps are taken more frequently but with noisy gradients.
Stochastic gradient descent has several advantages over ordinary gradient descent. Not only
is it computationally cheaper to compute gradients over smaller batches, but the stochastic
element of the optimizer also makes it less prone to getting stuck in local minima making it more
robust [Bishop, 2006]. The optimizer ADAM further improves on stochastic gradient descent by
using momentum and adapting the step size while training [Kingma and Ba, 2015]. Momentum
is a method of using an exponentially moving average of the calculated gradients for the update
step, which accelerates the descent by dampening fluctuations of the trajectory. The step size is
adapted such that the step size decreases when an optimum is close.

The complexity of neural networks increases as the architecture becomes deeper and the number
of layers and units increase. However, with increasing complexity, comes the risk of overfit-
ting. There are several regularization methods for preventing overfitting, and a commonly used
method is dropout. During training with dropout, each weight is randomly set to zero with some
probability p. This reduces co-adaptation of neurons, which happens when some neurons can
only detect features depending on the output of other specific neurons. Thus, adding dropout
reduces the likelihood of overfitting [Hinton et al., 2012].

Another approach to reduce overfitting is weight decay, which is an L2 regularization of the model
weights [Nielsen, 2015, Chap. 3]. The regularization is created by adding a scaled sum of squares
of the model weights such that

E(w)WD = E(w) + λ

2n
∣∣w′∣∣22 (2.47)

where E(w) is the non-regularized loss function from equation (2.45), λ is the regularization
parameter, and w = [w′

w0], where w
′

are the model weights and w0 are the model biases.
The regularization parameter, λ, thus controls the trade-off between small weights, encouraged
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by the regularization, and the minimization of the loss function. The partial derivatives of the
regularized loss function w.r.t. the weights w

′
and biases w0 become

∂

∂w′E(w)WD =
∂

∂w′E(w) + λ
nw

′
(2.48)

∂

∂w0
E(w)WD =

∂

∂w0
E(w). (2.49)

Thus, weight decay does not impact the partial derivatives of the biases, which means the biases
can be updated using gradient descent following the same concept presented in equation (2.46).
In order to handle the gradient w.r.t. to the weights, the last term, λ

n
w
′
, is simply added to the

gradient of the non-regularized loss-function also calculated w.r.t. the weights. This means that
the weights can be updated using gradient descent with a small modification:

w
′,τ+1

= (1 −
ηλ
n )w′,τ

− η
∂

∂w′E(wτ), (2.50)

Thus, the current weights are rescaled by a factor of (1 − η λ
n
) before taking a step in the direction

of the negative gradient of the non-regularized loss function. Weight decay can therefore also be
used with the previously mentioned optimization algorithms, Stochastic Gradient Descent and
ADAM.

Convolutional Neural Network

Feed forward neural networks (FFNN) presented above fall short when modelling images. Images
are typically high dimensional (since the number of features equals the number of pixels), which
requires a large number of weights in the input layer. Moreover, the spatial location of the
pixels conveys information and images typically have translation invariance, meaning that images
can be, e.g., shifted or rotated without changing the meaning of the motive [Nielsen, 2015,
Chap. 6]. These properties are not modelled efficiently in the classical network architecture, and
the convolutional neural network (CNN) addresses these challenges.

Analogously to the section presenting the feed forward neural network, the convolutional neural
network will be presented with the first layer as starting point. Each pixel in the input image
corresponds to an input neuron in the CNN. Unlike in the FFNN, the hidden units in a CNN are
only connected to an L×M ×C grid of the input neurons, where C is the number of channels in
the input image. The region of the input neurons accessible to a hidden neuron is called the local

receptive field. The hidden unit z
(1)
j,k in the first hidden layer, is calculated using the L×M ×C

kernel, w, in the following way:

z
(1)
j,k = h(b(1) +

L−1

∑
l=0

M−1

∑
m=0

C−1

∑
c=0

w
(1)
l,m,c ⋅ xj+l,k+m,c) , (2.51)

where h(⋅) is the activation function, b is the bias, wl,m,c is the (l,m, c)th entry in the kernel

and xj+l,k+m,c is the (j + l, k +m, c)th entry in the input image. This calculation is performed
repeatedly for different local receptive fields, which are created by moving the kernel across
the input neurons. How far the kernel is moved each time is called the stride. A stride of 1
corresponds to moving the kernel a single pixel at a time when computing hidden neurons of the
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first layer. A larger stride and/or a larger kernel will therefore yield fewer local receptive fields
and thereby fewer hidden units.

The hidden units computed with a specific kernel collectively form a feature map where each
unit shares its weights and biases with the other hidden units, i.e., the weights and bias seen in
equation (2.51). Thus, by moving the kernel across the input neurons, the local receptive field
identifies the same characteristics across all sections of the image. By performing the calculations
in this way, only a single kernel (M ×L×C + 1 weights in total) needs to be learned to create a
feature map, which drastically reduces the required number of parameters compared to a FFNN.
Typically, there will be a number of feature maps produced in each layer such that they can be
trained to identify different characteristics based on the input neurons. This is done by using
several kernels on the input neurons and letting each feature map become a channel in the hidden
layer. The collection of these feature maps created by hidden units are called a convolutional
layer. When computing the neurons of the next layer of the CNN, the produced feature maps
from the previous layer are then used as the new input. [Nielsen, 2015, Chap. 6].

Besides the convolutional layers, CNNs typical includes pooling and batch normalization. The
pooling layer performs an aggregation of the local receptive field in each feature map thus reducing
the size of the feature map. Possible aggregation functions used in the pooling layer include taking
the average, max or the L2 norm of the units in the local receptive field. By using pooling, only
the presence of a certain feature in a region of the image is retained, while the exact location
is left out. This helps to further reduce the number of parameters in the network [Nielsen,
2015, Chap. 6]. Batch normalization was proposed by [Ioffe and Szegedy, 2015] to make the task
of training neural networks easier. Batch normalization normalizes the produced feature maps to
have zero-mean and unit standard deviation, and instead makes the mean and standard deviation
learnable parameters. Batch normalization speed up the training of the network because the
distribution of the input does not change during training due to the updates of the weights.

Finally, the last stage of convolutional neural networks consists of flattening the last convolutional-
or pooling layer and adding one or more fully connected layers to create an output that can be
used for, e.g., classification. Figure 2.3 shows an example of the architecture of a simple convo-
lutional neural network with a single input channel, a convolutional layer, a pooling layer, and a
fully connected output layer.

DenseNet

DenseNet is a model with a specific architecture proposed by [Huang et al., 2018]. It combines
the idea of densely connected feed forward neural networks and convolutional neural networks.
The authors call their architecture a Dense Convolutional Network - i.e., DenseNet.

As described in the previous subsection, ordinary convolutional neural networks (CNN) create a
number of feature maps in each layer of the network. The first feature maps are learned directly
from the input pixels. The maps are then passed to the second layer, which creates new feature
maps that are passed to the third layer, etc. The feature maps in layer ` are thus calculated as

x` = H`(x`−1), (2.52)

where x are the feature maps and H`(⋅) is the non-linear transformation of the feature maps in
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Figure 2.3: Example of a convolutional neural network with a single convolutional layer, a
pooling layer, and a fully connected output layer. The input is an image consisting of 28 × 28
pixels and a single channel. Three feature maps, each with 24 × 24 hidden neurons, are created
in the convolutional layer. This is followed by a pooling reducing the size of each feature map
to 12 × 12. Finally, the fully connected layer has ten neurons, which could, e.g., correspond to
the output of a classification task with ten classes. Figure from [Nielsen, 2015].

the `
th

layer
1
. The feature maps created in any subsequent layer of an ordinary CNN should

thus learn new information as well as preserve needed information of the feature maps from
the previous layer. Increasing the depth of the network increases the distance between input
and output, which can hinder the flow of information and gradients through the network. The
architecture of DenseNet alleviates this issue by creating a ”collective knowledge” in the network
using the concatenated feature maps learned in the previous layers as input. Thus, the feature
maps in layer ` are calculated as

x` = H`([x0,x1, . . . ,x`−1]), (2.53)

where [x0,x1, . . . ,x`−1] are the feature maps from the preceding layers concatenated along the
channel dimension. In DenseNet, H`(⋅) is a composite of three operations: batch normalization,
the rectified linear unit (ReLU) function and a 3 × 3 convolution.

The DenseNet architecture is composed of a number of dense blocks in which each layer takes
the feature maps from all preceding layers in the dense block as input. The number of feature
maps produced by H`(⋅) is called the growth rate. Figure 2.4 shows an example of a dense block
with a growth rate of four. Between the dense blocks, transition layers with 1 × 1 convolution
and a 2 × 2 average pooling are used to reduce the dimensions of the network and thereby the
number of required parameters.

1
The notation used in section is slightly different from the notation used in subsection 2.3.2. We have used

this notation to preserve the notation used in the original paper proposing the architecture [Huang et al., 2018].
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Figure 2.4: Layout of a dense block with a growth rate of four in DenseNet. Figure from [Huang
et al., 2018]

The DenseNet network architecture was a big improvement on existing networks such as ResNet,
and at the time of publication, DenseNet significantly improved the performance on the two
CIFAR datasets, ImageNet, and SVHN [Huang et al., 2018].
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Chapter 3

Materials and Methods

In this chapter, we will present the datasets that are used as examples for the fairness analyses
and describe how they have been modelled. In section 3.1 the datasets are presented, including
a description of the pre-processing process and the distribution of observations broken down by
the sensitive group and target variable. In section 3.2 we present how the predictive models are
optimized and trained on the example datasets.

3.1 Example Datasets

Four small datasets have been chosen as example datasets in this thesis. The datasets are used
to showcase the use of the toolkit to do fairness analyses, which will be presented in chapter 4.
Each of the datasets contains a binary classification problem, where the predictions made by an
algorithm potentially have a large impact on an individual’s life. The datasets come from two
different domains: Recidivism and credit scoring, and they will be presented by category one at
a time.

3.1.1 Credit Scoring

The first example is two credit score datasets from Germany and Taiwan. A credit score is a
score used to approximate individuals’ creditworthiness, and this score is used by banks when
deciding whether to offer credit or a loan to an individual. The score is calculated based on
the individual’s financial situation [Brock, 2021]. It is important the scores are fair, since the
predicted score influences an individual’s loan opportunities.

German Credit Score Data

The first credit data set is the German Credit Data dataset [Dua and Graff, 2017], which is
commonly used as an example in the fairness literature [Verma and Rubin, 2018,Bellamy et al.,
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2019, Mehrabi et al., 2019, Kamiran and Calders, 2012]. The dataset is from 1994 and contains
1000 observations with 20 attributes each. The attributes include credit history, employment
situation, personal status, and sex. The target variable is the credit score. The credit score
is binary, and it can be either good (y = 0) or bad (y = 1). In the fairness analysis, we will
analyze the fairness of the predictions from the models trained on the dataset with respect to
sex. A total of 30% of the individuals had a bad credit score, and a slightly larger proportion
of women (35%) than men (28%) had a bad credit score. Out of the 1000 individuals, 690 were
male (figure 3.1).
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Sex n Bad Credit Score

Male 690 191 (28%)

Female 310 109 (35%)

Total 1000 300 (30%)

(b)

Figure 3.1: Number of observations and percentage of individuals receiving a bad credit score
broken down by males and females. The figure (a) visualizes the numbers shown in the table (b).

Taiwanese Credit Score Data

The second credit score dataset is from a Taiwanese bank, and the dataset consists of 30,000 credit
card holders from the bank [Yeh and Lien, 2009,Dua and Graff, 2017]. The dataset contains the
following attributes: Gender, amount of credit given, education, marital status, age, history of
past payment delays, history of bill statements, and history of payment amount. The three last
attributes contain monthly history from April 2005 to September 2005 amounting to 18 attributes
containing the history for the past six months for each of the three variables. The target is to
predict whether a credit card holder will default the payment due the next month (October 2005).
The dataset does not contain any missing values. Similar to the German credit score dataset,
the Taiwanese dataset will be evaluated using sex as the sensitive group. Figure 3.2 shows that
the rate of default is similar for men and women (24% and 21 % respectively), and 18,112 out
of the 30,000 credit holders are female.
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Sex n Defaulted

Female 18112 3763 (21%)

Male 11888 2873 (24%)

Total 30000 6636 (22%)

(b)

Figure 3.2: Number of credit holders and percentage of credit holders defaulting on their loan
broken down by males and females. The figure (a) visualizes the numbers shown in the table (b).

3.1.2 Criminal Recidivism

Predictive algorithms can be used for risk-assessment, and one of the most widely known use
cases is predicting the risk of offenders recidivating. There can be many reasons why recidivating
is interesting to predict from a law enforcement perspective. We will consider two datasets to
predict recidivism of offenders in Florida, USA (COMPAS dataset) and juvenile offenders in
Catalonia, Spain.

COMPAS

COMPAS stands for Correctional Offender Management Profiling for Alternative Sanctions and
is an algorithmic tool used across the United States to assess an offender’s risk of recidivating
[Northpointe, 2015,Angwin et al., 2016]. The tool aids the judges in determining whether or not
an offender is too dangerous to be let out on bail. The tool was created and owned by Northpointe
Inc., who later have become Equivant. The algorithm allocates a risk score between 1 and 10 to
each offender, categorizing them into low, medium or high risk in terms of recidivating within two
years. Prior to this prediction, each offender is screened by answering more than 130 questions,
and the answers are used to calculate the risk [Northpointe Inc., 2011,Northpointe, 2015].

In 2016 ProPublica, which is a non-profit organization aiming to produce investigative jour-
nalism in the public’s interest, published an article analyzing scores from the COMPAS algo-
rithm [Angwin et al., 2016]. The ProPublica analysis concluded that the algorithm discriminated
against African-Americans because African-Americans generally received higher risk scores and
had a higher false positive rate than White offenders. The analysis sparked discussions regarding
algorithmic fairness in general, and more specifically, about algorithmic amplification of discrimi-
nation of African-Americans in the American justice system. Because of this debate, the dataset
has become a cornerstone in fairness-related research, and it is often used for benchmarking
purposes.

ProPublica obtained scores by the COMPAS algorithm for defendants pretrail in Broward
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County, Florida, from 2013 and 2014. They matched the COMPAS scores with criminal records
in the county collected on April 1st, 2016. In this way, they could determine who had become
recidivists by April 2016. ProPublica has gathered their processed data in a csv file called
compas-scores-two-years.csv, which can be accessed on their github [Pro-publica, 2017]. This
was created specifically to investigate recidivism within two years, and it is the one Propublica
used in their analysis. ProPublica chose a time horizon of two years based on Equivant’s Practi-
tioner’s Guide, which states that the general recidivism score should predict ”a new misdemeanor
or felony offense within two years of the COMPAS administration date” [Northpointe, 2015,
p. 27]. The COMPAS scores lie in [1,10], which correspond to a risk classification ([1,4] = low,
[5,7] = medium, [8,10] = high). In this analysis, medium and high risk classification is considered
a positive prediction of recidivism because the Equivant Practitioner’s Guide states that ”scores
in the medium and high range garner more interest from supervision agencies than low scores,
as a low score would suggest there is little risk of general recidivism” [Northpointe, 2015, p. 27].

The original data file contains 7214 observations of COMPAS scores. The COMPAS scores
were linked to the criminal case associated with the individual’s COMPAS score. For some
COMPAS scores, no criminal case for the individual was found within 30 days of the date of
the individual’s COMPAS score, and these observations were excluded from the dataset in the
ProPublica analysis. We have excluded the same observations, which leaves 6172 observations in
the dataset. ProPublica has been criticized for introducing a two-year sample cutoff only for non-
recidivists, but not for recidivists [Barenstein, 2019]. We agree with this critique and therefore
omit all individuals who recidivated after April 1st, 2014, as their non-recidivated counter-parts
cannot be included because the follow-up time is less than 2-years.

The dataset contains an attribute describing the race of each person. Due to small group sizes,
we excluded Hispanics (n = 448), Asians (n = 27), Native Americans (n = 9) and the category
Other (n = 309). After this exclusion, 4511 observations remain. Figure 3.3 shows how ob-
servations are distributed across race and recidivism status. There are more African-Americans
recorded in the dataset, and a higher proportion of African-Americans recidivate (44%) compared
to Caucasians (30%).
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Race n Recidivists

African-American 2682 1168 (44%)

Caucasian 1829 548 (30%)

Total 4511 1716 (38%)

(b)

Figure 3.3: Number of observations and percentage of individuals recidivating broken down by
race. The figure (a) visualizes the numbers shown in the table (b).
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Catalan Juvenile Recidivism

The Government of Catalonia’s Department of Justice has a Centre for Legal Studies and Spe-
cialized Training (CEJFE). They have published several datasets used for their research within
the social and criminological research and training area of the CEJFE. One of the published
datasets contains information about juvenile crime and recidivism in Catalonia. The data con-
tains information about juveniles who completed an educational program, as a consequence
of their criminal behavior, in 2010 in Catalonia. The dataset also includes information about
whether each juvenile recidivated by 2013 and by 2015 [Centre d’Estudis Juŕıdics i Formació
Especialitzada, 2016]. The dataset contains n = 4753 records and 132 attributes grouped into 11
categories [Centre d’Estudis Juŕıdics i Formació Especialitzada, 2015]. We will restrict our anal-
ysis to use attributes from three categories: Demographic variables, criminological variables,
and variables regarding the assigned educational program. The remaining categories contained
detailed information about the juveniles’ recidivism or the different programs attended. These
remaining categories were not included because the attributes about the programs contained
many missing values, and we concluded that we did not require such detailed data about each
program for our purpose. Data about each juvenile’s recidivism status have been collected for
the years 2013 and 2015, respectively. We have chosen to model whether or not the juveniles
have recidivated after five years, i.e., in 2015, as the target variable.

The dataset has a high level of detail, and to avoid groups containing very few individuals, we
omit the categorical attributes describing the committed crime in most detail, the region of the
juvenile, and the attribute describing the exact country of origin of each juvenile. We also extract
year and month from date attributes. All text in the dataset, e.g., names of attributes, are in
Catalan, so we have translated attribute names and selected categorical variables to English.
Table A.1 in the appendix lists the final processed attributes, including a short explanation and
a summary of their domains. The juveniles’ area of origin, which is grouped into the categories:
Spain, Latin America, Maghreb, Europe, and Other, is used as the sensitive attribute for the
analysis. Figure 3.4 shows that the groups are very unbalanced in size and that the recidivism
rate differs by area of origin. The recidivism rate of juveniles from the Maghreb region is 52%,
which is much larger than the overall recidivism rate in the dataset (34%).
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Area of Origin n Recidivists

Spain 2972 893 (30%)

Latin America 727 279 (38%)

Maghreb 610 315 (52%)

Europe 244 83 (34%)

Other 99 24 (24%)

Total 4652 1594 (34%)

(b)

Figure 3.4: Number of observations and percentage of individuals recidivating broken down by
origin. The figure (a) visualizes the numbers shown in the table (b).
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3.2 Modelling Example Data Sets

In order to analyze the fairness of the predictive models, we first need to build the predictive
models. The COMPAS dataset includes the output of the COMPAS risk classification, and this
classification is used for the fairness analysis. For the remaining datasets, we construct two types
of predictive models: A neural network and a logistic regression. We have chosen to use a logistic
regression because it is simple to implement and use and, therefore, quite commonly used in the
industry. The neural network is chosen because neural networks are receiving much attention in
the industry and have become state of the art for many prediction tasks.

The datasets are split into training, validation, and test sets as is the standard for supervised
learning. First, the data is split into two sets containing 20% and 80% of the data, respectively.
The 20% split is the test set, while the 80% is further partitioned with another 80/20 split such
that the smaller part is the validation set, and the larger is the training set. Each of the three
subsets is standardized using StandardScaler from scikit-learn [Pedregosa et al., 2011] fitted on
the training set. The German credit score dataset and the Catalan juvenile recidivism dataset
are small, and to get a prediction of all observations, we make five different random splits of
data inspired by 5-fold cross validation. Within each split, 20% are considered test data, while
the remaining 80% is further partitioned into a training and validation using a new 80/20 split.
Each of the five partitions is then standardized using the training set of that specific fold. By
splitting the data in this manner we will fit a model to each of the splits’ training data yielding
five models. The sizes of all test, training, and validation splits can be seen in table A.2 in the
appendix.

The logistic regression is fitted on each of the training sets using scikit-learn’s implementa-
tion [Pedregosa et al., 2011]. We are using logistic regression with Ridge regularization and a
regularization strength of 1. Out of the possible solvers available in the scikit-learn implementa-
tion, we use the liblinear solver. The chosen regularization type and strength are the scikit-learn
default settings for logistic regression. We have chosen not to change these because an off-the-
shelf model is adequate for the examples. Moreover, it is interesting to use these settings to create
a predictive model for an unfairness analysis as it is likely that many other logistic regression
models are fitted in a similar manner. The liblinear solver has been chosen as it often performs
well on small datasets. Predictions are then made on the corresponding test set.

The neural network models are simple fully connected networks with dropout and ReLU acti-
vation between the layers and a sigmoid activation function after the last layer. The number of
layers, the number of hidden units in each layer, the learning rate, and the amount of dropout are
optimized using Optuna. Optuna is a hyper-parameter optimization software, which allows the
user to dynamically construct the search space tailoring it to a specific task [Akiba et al., 2019].
We use Optuna to select the network architecture rather than specifying it ourselves because it
minimizes the influence of our decisions on the network and thus the predictions. Each network
architecture is optimized using 100 trials with a maximum of 100 epochs with the TPE-sampler
and pruning, which terminates unpromising trials. Table 3.1 shows the hyper-parameter values
that are being optimized over. We have chosen these sets of values to have a smaller variance
in the network architectures and encourage cohesiveness across the models. This choice is also
motivated by it being easier to interpret the difference between a network with 5 versus 10 hidden
units in a layer compared to 5 versus 6 hidden units.

The networks are trained using binary cross entropy loss, and the validation loss is used to
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tune the hyper-parameters. The default cut-off of 0.5 is used to make the binary predictions.
The networks are implemented using PyTorch [Paszke et al., 2019] and trained using PyTorch
Lightning. Implementations can be found in our Github repository [Fuglsang-Damgaard and
Zinck, 2021].

Parameter Domain

n layers {1, 2, 3}
n hidden {5, 10, 15, 20}
learning rate {1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1}
p dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

Table 3.1: The table shows the possible values for the hyper-parameters
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Chapter 4

Fairness Toolkit

This chapter presents the toolkit BiasBalancer. Firstly, the toolkit itself will be presented and
argued for in detail. This is followed by an end-to-end example of how BiasBalancer can be
used, showcased in a Jupyter Notebook in which the canonical COMPAS dataset is analyzed. In
the end, unfairness analyses using the toolkit will be carried out on the predictions by logistic
regressions and feed-forward neural networks using the three example datasets presented in
section 3.1. These analyses are presented together to showcase how BiasBalancer can be used in
different scenarios.

4.1 Presentation of BiasBalancer

In this section, we present the fairness toolkit, BiasBalancer. The aim of BiasBalancer is to
combine several fairness measures in order to gain a nuanced and comprehensive analysis of the
fairness of a predictive algorithm. The source code and documentation of BiasBalancer can be
found in the Github respository [Fuglsang-Damgaard and Zinck, 2021] and in the documenta-
tion page [Fuglsang-Damgaard and Zinck, 2022]. A screenshot from the documentation page is
included in the appendix (figure A.3) to give the reader an impression of the documentation.
BiasBalancer has a hierarchical structure with three levels, where each level assesses the fairness
in ascending level of detail. This gives the user easier navigation through the fairness analysis of
the algorithm in question. The levels can be summarized as:

• Level 1: A single number that aims to summarize the potential degree of unfairness present
in the predictive algorithm.

• Level 2: An overview plot visualizing the potential sources of the unfairness measured in
level 1.

• Level 3: A suite of methods that can be used to dive further into the sources of the
unfairness in the predictions.

The following sections present each of the three levels.
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Figure 4.1: Weighted misclassification rate (WMR) for varying choices of the false positive weight,
wFP, depicted as a function of the percentage of false positives and false negatives out of a total
of n classified observations.

4.1.1 Level 1: Single Unfairness Measure

The first level of BiasBalancer is a single metric measuring the degree of unfairness present in the
predictions. The metric is a single number because it aims to allow for easy comparison between
models and is a quick indicator of the level of unfairness.

To create this metric, we first construct the weighted misclassification rate (WMR). The weighted
misclassification rate is a measure of how large the error of a classifier is, weighted by how severe
a false positive is compared to a false negative. The weighted misclassification rate is defined as

WMR = c(wFP) ⋅
wFPFP + (1 − wFP)FN

n , (4.1)

where FP and FN are the number of false positives and false negatives respectively, n is the total
number of observations, wFP ∈ [0, 1] is the false positive weight, and c(wFP) is a normalization
constant. The false positive weight indicates how unfavorable it is to receive a false positive
compared to a false negative. The false positive weight is restricted to be within the interval
[0, 1], and a higher false positive weight indicates that false positives are considered more severe
than false negatives. The normalization constant, c(wFP), ensures that WMR is always in the
interval [0, 1]. The constant is defined as

c(wFP ) = min ( 1
wFP

,
1

1 − wFP
) . (4.2)

A derivation of the normalization constant is found in appendix A.1.

Figure 4.1 shows the weighted misclassification rate as a function of the percentage of false nega-
tives and false positives of the total number of observations for wFP ∈ {0, 0.5, 1}. When wFP = 0.5,
the WMR increases as the percentage of either misclassification type increases. Given wFP = 0,
the WMR disregards the proportion of false positives and only increases as the percentage of
false negatives increases. Vice versa for wFP = 1. Thus, the WMR reflects the trade-off between
the severity of false positives and false negatives by the choice of wFP.

The weighted misclassification rate for a sensitive group a, WMRa, can be calculated by replacing
FP, FN and n with FPa, FNa and na, where, e.g., FPa is the number of false positives in the
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sensitive group a. By using the group wise WMR we can calculate the weighted misclassification
quotient (WMQ ) for each group. Let WMRmin be the minimum weighted misclassification rate
across all groups: WMRmin = mina∈AWMRa. Then the weighted misclassification quotient for
group a is defined as

WMQa =
WMRa −WMRmin

WMRmin + ε
⋅ 100% for a ∈ A, (4.3)

where ε is a small number added to the denominator to make the weighted misclassification
quotient well-defined for WMRmin = 0. The final metric, which is a single number measuring the
overall unfairness of the model, is defined as the maximum WMQ across all sensitive groups:

max
a∈A

WMQa. (4.4)

The maximum weighted misclassification quotient measures the maximum difference in weighted
misclassification rate across the sensitive groups. We also introduce the fairness criterion weighted
misclassification rate balance (WMR-balance), which requires the weighted misclassification rate
to be equal in all sensitive groups. If the maximum weighted misclassification quotient is equal
to zero, the predictions fulfill WMR-balance.

Motivation of Design

The weighted misclassification quotient is designed to satisfy a number of requirements to make
it a useful measure of unfairness. In the following list, we will argue for the motivation behind
each requirement and discuss how the chosen metric fulfills it.

Requirement 1: A seemingly fair model should have a metric close to 0, and the unfairness metric
should increase as a model becomes more unfair

We have chosen to measure the degree of unfairness on a positive scale starting at zero because
such a scale is easy to interpret and understand. A seemingly fair model should at least predict
equally wrong across the sensitive groups, which would be reflected in similar weighted misclas-
sification rates across groups giving small weighted misclassification quotients. However, if one
group, a, sees more false negatives or false positives than the remaining groups, this would in-
crease WMRa and WMQa of group a, which would increase the overall model unfairness. The
unfairness measure thus satisfies to increase as the algorithm becomes more unfair. It should
be mentioned that the maximum weighted misclassification quotient is chosen to highlight the
largest gap between groups. In this way, the weighted misclassification quotient serves as a red
flag, highlighting the potentially largest source of unfairness. A weighted misclassification quo-
tient of 0% should not be seen as a guarantee that the algorithm is fair. However, it does show
that the predictions are similar in severeness across the specified sensitive groups.

Requirement 2: A perfect classifier (classifying Ŷ = Y for all observations) should be fair accord-
ing to the metric.

The supervised machine learning community strives to develop models that accurately predict
an outcome based on a given target. It is crucial that the targets are chosen carefully. Given the
chosen targets are sensible and fair, a perfect classifier is considered fair because every sensitive
group gets the optimal prediction. The weighted misclassification rate (4.1) only considers the
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false positives and false negatives of a classifier. It means that a perfect classifier would have
a weighted misclassification rate of zero for all groups, thus implying a maximum weighted
misclassification quotient of 0%. A perfect classifier is, therefore, deemed fair according to the
metric.

Requirement 3: The metric should be customizable such that it can appropriately reflect the degree
of severity of false positives and false negatives in the specific setting

In real-life cases, false positives and false negatives often yield consequences of different sever-
ity. Thus, it depends on the context whether a sensitive group is discriminated against when
experiencing more false negatives or false positives compared to the other groups. The weighted
misclassification rate accommodates this by including a weight wFP, which enables the user to
customize the metric such that it appropriately reflects the degree of severity of false positives
and false negatives. If false positives and false negatives are equally bad, then wFP = 0.5 and the
weighted misclassification rate (4.1) becomes equivalent to the ordinary misclassification rate.

Requirement 4: The metric should be easily interpretable regardless of prior knowledge of fairness
literature

This requirement is important as the first level of BiasBalancer aims to be a gateway to under-
standing the nuances of the fairness of a predictive model. Such a gateway should be simple, and
using the percent-wise difference between groups is an easily understandable and interpretable
way of comparing them. Furthermore, because the maximum weighted misclassification quotient
simplifies to the largest percent-wise difference in misclassification rates when wFP = 0.5, it is
easily interpretable without any introduction to fairness literature. The weight is also intuitive
to use as increasing wFP emphasizes the importance of avoiding false positives while decreasing
it emphasizes avoiding false negatives.

Requirement 5: The metric should allow for comparisons between different models.

It is common to compare the misclassification rate of different models to choose the better option
for, e.g., a classification task. Analogous to that concept, the weighted misclassification quotient
allows for the comparison of the largest gap in fairness across sensitive groups in a modeling
situation using different models. Like the misclassification rate, the weighted misclassification
quotient is independent of the number of observations in the dataset, which means that the
metric is on the same scale for all datasets.

Comparison of WMR to other rates

Like the other presented observational fairness criteria, the weighted misclassification quotient
is calculated based on rates determined by the group-wise confusion matrices. WMQ is based
on WMR, separation is based on the FPR and FNR, sufficiency is based on FOR and FDR,
while finally independence is based on the predicted positive rate, PP/n. Similarly to sufficiency
and separation, the weighted misclassification rate only takes misclassified observations into
account. A perfect classifier is, hence, always deemed to be fair. In this way, the weighted
misclassification quotient is more similar to separation and sufficiency than the independence
criterion, which typically will not deem a perfect classifier fair. WMQ only takes a single rate,
WMR, into account, while separation and sufficiency are based on two rates each. Separation
requires the misclassification rate to be equal across sensitive subgroups based on the true class
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label. Similarly, sufficiency requires an equal misclassification rate across sensitive subgroups
based on the predicted class label. As a consequence, the two rates in sufficiency and separation
can yield different results. In order to get a unified answer about which group receives the
most unfavorable predictions according to sufficiency or separation, it is necessary to weigh the
potentially conflicting results in some way. The weighted misclassification rate is an attempt at
exactly this, and the weighting of the results is done using the false positive weight wFP. This
weighing means that different treatments of subgroups can ”cancel out” and result in an overall
fair model.

Let’s take an example with separation: Say groups A and B have the same number of observations
(nA = nB = 100) and same underlying class distribution (Pa = Pb = 50). Imagine a scenario,
where FPA = FNB = 20 and FNA = FPB = 10. Then the separation criterion would say that
group A is treated unfairly with respect to FPR because FPRA = 2 ⋅ FPRB , and similarly
group B is treated unfairly with respect to FNR. However, the WMR -balance criterion would
overall deem the model fair because both groups get a total of 30 unfavorable predictions - the
unfairness experienced by the groups can be said to ”cancel out”. If wFP > 0.5, indicating
that false positives are more desirable than false negatives, the weighted misclassification rate
would be higher for group A than for group B. The opposite would be true if wFP < 0.5. A
similar comparison is possible with sufficiency. A final difference between WMR and sufficiency
and separation is that WMR -balance is not sensitive to the underlying distribution of actual
positives or predicted positives, but only depends on the number of misclassifications and the
total number of observations.

Hence, the weighted misclassification quotient is useful as a single metric attempting to measure
the overall unfairness present in the model. It is, however, important to emphasize that a single
metric cannot stand alone. Fairness analysis should include analysis of the predictions with
respect to many different fairness metrics to get a nuanced picture. This is what the next level
of BiasBalancer is intended for, and it is presented in the next section.

4.1.2 Level 2: Overview of Unfairness

The second level of BiasBalancer provides an overview of the potential sources of unfairness
present in the predictive model. It creates the overview through a visualization, and this section
will first introduce the quantities visualized and then present the visualization itself. As presented
in section 2.2 many of the fairness criteria are defined as balances in rates, such as the false
positive rate, across sensitive groups. The visualization, therefore, depicts absolute and relative
rates for each sensitive group, as well as how they impact the different fairness criteria in an
Unfairness barometer.

Absolute Rates

The rates chosen for the visualization are the false positive rate (FPR =
FP
N

), false negative

rate (FNR =
FN
P

), false discovery rate (FDR =
FP
PP

) and false omission rate (FOR =
FN
PN

). We
have chosen to show these rates in the visualization because they have either the number of false
positives or false negatives in the numerator of their respective expression. By choosing these
rates, we keep the focus on misclassifications, just as in the first level. Moreover, the remaining
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four rates, (true positive rate, true negative rate, positive predictive value, and negative predictive
value), can be derived from the four presented rates because they come in pairs summing to 1,
see eq. (2.1). Along with the rates, an α = 0.05 Wilson confidence interval is included to indicate
whether differences in the rates across sensitive groups could be attributed to random fluctuations
due to the size of the dataset. [Brown et al., 2001] analyzes the coverage probabilities of different
types of confidence intervals for interval estimation in a binomial proportion. They show that
the standard Wald confidence interval falls short, especially if the mean is near the boundaries
of the distribution. Instead, their findings show that the Wilson confidence interval is a better
choice, and we hence use this confidence interval.

Relative Rates

In level 1 of BiasBalancer, the difference between the weighted misclassification rates across
the sensitive groups was quantified using the weighted misclassification quotient. The difference
between the rates, FPR, FNR, FDR, and FOR, will be quantified in a similar manner using the
Relative rate. For sensitive group a ∈ A and rate r ∈ {FNR, FPR, FDR, FOR, WMR}, the
relative rate, RRa(r), is calculated as

RRa(r) =
ra − rmin
rmin + ε

⋅ 100% (4.5)

rmin = min
a∈A

ra, (4.6)

where ra is the value of rate r for sensitive group a. ε is a small number added in the denomina-
tor to ensure the relative rate is well-defined if rmin = 0. By construction, this means that the
group with the smallest rate will have a relative rate (RR) of 0%. Notice that when r =WMR
then RRa(r) is equivalent to the weighted misclassification quotient (WMQ) defined in equa-
tion (4.3).

Unfairness Barometer

The fairness criteria considered in section 2.2 depend on balances in rates across sensitive groups.
Table 4.1 connects the observational fairness criteria, and the weighted misclassification quo-
tients, to those rates that need to be balanced across groups in order for the criteria to be
satisfied in a strict sense. We present the Unfairness Barometer as a way to present an overview
of how close the analyzed predictions are to satisfying the criteria. Using unfairness in the name
of the barometer emphasizes that it is not possible to deem a model fair in all senses using the
barometer, but that large values in the barometer should be used to reveal potentially unfair
treatment of subgroups.

As a way of quantifying the degree to which predictions violate a fairness criterion, we introduce
the mean maximum relative rate (MMRR). The MMRR quantifies the gap between the relevant
rates of the best predicted and worst predicted groups based on the relative rates defined in
eq. (4.5). The mean maximum relative rate (MMRR) for fairness criterion f is computed as

MMRR(f) = 1

∣Rbalanced(f)∣
∑

r∈Rbalanced(f)
max
a∈A

RRa(r), (4.7)
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where RRa(r) is the relative rate of rate r for group a as seen in equation (4.5). Rbalanced(f)
is the set of rates needed to be balanced in order to satisfy criteria f seen in table 4.1, and
∣Rbalanced(f)∣ is the number of rates the criterion is based on.

The sensitive group most unfavorably treated by the algorithm according to a fairness criterion
is defined as the group with the highest relative rate on which the fairness criterion depends.
For instance, the group with the highest relative false negative rate will be deemed the most
disadvantaged sensitive group by the equal opportunity fairness criterion. The independence
criterion is different from the other criteria because it does not depend on the number of mis-
classifications but instead on the fraction of predicted positives or equivalently the fraction of
predicted negatives. In order for the mean maximum relative rate to correctly identify the most
disadvantaged group for the independence criterion, the rate used depends on the false positive
weight. Whenever the false positive rate is above 0.5, the mean maximum relative rate of the
independence criterion is calculated based on the fraction of predicted positives, because a pre-
dicted positive is less desirable than a predicted negative. Vice versa, if wFP < 0.5, the fraction
of predicted negatives is used. If the false positive weight is equal to 0.5, indicating that pos-
itives and negatives are considered to be similar in terms of how desirable a prediction is, the
independence criterion is not included in the unfairness barometer.

Equation (4.7) will simplify to maxa∈ARRa(r) for fairness criteria only requiring balance in one
type of rate. Whenever a fairness criterion depends on two rates, the mean of the maximum
relative rate is used. The definition of the MMRR implies that MMRR(WMR-balance) is
equivalent to the weighted misclassification quotient from equation (4.4).

The fairness criteria are originally formulated as hard constraints, such that a criterion is only
fulfilled when there is no difference between the rates across sensitive groups. Using the mean
maximum relative rate to quantify the degree to which a criterion is not satisfied leaves the
question of when the violation of the criterion is small enough to not cause grave concerns. For
this purpose, the Title VII of the Civil Rights Act of 1964 [U.S. Equal Employment Opportunity
Commission, 1964] is used as an inspiration. According to [U.S. Equal Employment Opportunity
Commission, 1979], the four fifths-rule has been adopted as a rule of thumb in order to avoid
adverse impact. It is used as a heuristic to indicate whether or not there is a substantial difference
in the rate of selection between groups based upon race, color, religion, sex, or national origin.
Based on this rule, generally, values of the mean maximum relative rate above 20% should be
investigated.

Fairness Criterion, f Rates to be Balanced, Rbalanced(f)
Separation FPR, FNR

False Positive Error Rate Balance FPR

Equal Opportunity FNR

Sufficiency FDR, FOR

Predictive Parity FDR

Independence PN /n or PP/n*

WMR.balance WMR

Table 4.1: Observational fairness criteria listed with the rates needed to be balanced across
groups for the criteria to be satisfied in a strict sense. *PP/n is used when wFP > 0.5 and PN /n
is used when wFP < 0.5. Abbreviations: FPR = false positive rate, FNR = false negative rate,
FDR = false discovery rate, FOR = false omission rate, WMR = weighted misclassification rate.
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The Visualization

FPR FNR FDR FOR
0.0

0.2

0.4

0.6

0.8

1.0
Group rates

A
B
C

0% 20% 40% 60% 80%

FPR balance
WMR balance

Separation
Sufficiency

Equal opportunity
Independence

Predictive parity

Unfairness barometer

One Discriminated Group
Two Discriminated Groups
Unfairness <20%

0% 20% 40% 60% 80%

WMR
FPR
FNR
FDR
FOR

Relative rates

Figure 4.2: The figure shows an example of the unfairness overview visualization from the second
level of BiasBalancer. It depicts the absolute and relative group rates, including how they
impact the fairness criteria. The left subplot shows the false positive rate (FPR), false negative
rate (FNR), false discovery rate (FDR), and false omission rate (FOR) of each sensitive group.
The top right subplot shows the relative rate (RR), i.e., how many percent larger each group’s
rates are compared to the smallest value of each rate. The bottom right subplot shows the
Unfairness Barometer, which depicts the mean maximum relative rate (MMRR) which measures
the maximum gap between rates relevant to the given fairness criteria. The opacity is controlled
by the weight wFP and helps draw attention to the important rates. In this plot false positives
had a small weight with wFP = 0.2. Focus is drawn to values above 20% by shading the bars below
this value. Values above 20% are colored according to the group receiving the most unfavorable
predictions.

Now when the concepts have been introduced, we can present the visualization of these con-
cepts. Figure 4.2 shows an example of BiasBalancer’s second-level visualization. The prediction
algorithm is only used for the purpose of presenting the visualization. The algorithm models a
binary classification task with three sensitive groups: A, B, and C.

The left subplot is a barplot showing the value of the four rates for each sensitive group. The grey
line on each bar indicates the 95% Wilson confidence interval of the rate. The opacity in the bars
is controlled by the false positive weight. The opacity is used to draw attention to those rates
that are most important with respect to either false positives or false negatives. If wFP = 0.5,
then every part of the plot will have the same opacity. Increasing the weight will highlight
the rates based on false positives since false positives are then considered the most undesirable
outcome. Decreasing the false positive weight will highlight the rates based on false negatives
leaving the other rates less opaque. In the example seen in figure 4.2, the weight is wFP = 0.2
yielding a stronger coloring of FNR and FOR because those rates are influenced by the number
of false negatives.

The top right subplot is a plot showing the relative rate (RR) of the rates from the left subplot.
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Moreover, it also includes the weighted misclassification quotient (WMQ). Since the weighted
misclassification quotient is the relative weighted misclassification rate, the label in the visual-
ization is WMR and not WMQ. Similar to the left subplot, the false positive weight controls the
opacity of the rates. Because the WMR depends on both false positives and false negatives, the
weighted misclassification quotient is kept at the same opacity for all values of wFP.

Finally, the right bottom subplot shows the Unfairness Barometer depicting the mean maximum
relative rate (MMRR) for each fairness criterion. The color of the bar is the color of the sensitive
group, which is deemed to receive the most unfavorable predictions based on the criterion.
Whenever the criteria sufficiency and separation point toward possible discrimination of two
different groups, the bar is colored in both colors using stripes. All bars are gray below 20% to
let the violations above 20% stand out. By adding the gray area to the visualization, we thus bring
focus on substantial relative differences according to different fairness criteria between sensitive
groups. Moreover, this helps to understand the magnitude of the values when comparing several
second-level visualizations because the x-axis adapts to the data.

4.1.3 Level 3: Analyses of Unfairness Sources

The third level of BiasBalancer enables the user to dive further into the fairness of the predictive
model and the potential sources of unfairness. It consists of a number of separate analyses,
which contribute to a more nuanced understanding of the fairness of the model. An overview of
the possible analyses is available in table 4.2. All analyses include a plot and an output table
containing the data shown in the plot. This section will elaborate on the methods seen in the
table. Moreover, it is possible to see all visualizations in figure 4.3. It is the intention that the
user of BiasBalancer does not use all method but instead chooses which analyses are relevant
based on the findings from the second level.

Method When What

Confusion Matrix The dataset or a group contain few
observations

Confusion matrix for each group

wFP Influence Unsure about how wFP influences
the result

WMQ for each sensitive group as a
function of wFP

ROC Curves Separation, FPR-balance or equal
opportunity is large in unfairness
barometer

The ROC curve for each sensitive
group

Calibration Sufficiency or predictive parity is
large in unfairness barometer

Calibration curve for each group.

Prediction Rates Independence is large in unfairness
barometer

Fraction of predicted positives
across groups

Table 4.2: Overview of the available methods in level 3 of BiasBalancer. Abbreviations: wFP:
False positive weight, WMQ : Weighted misclassification quotient, ROC: Receiver operation char-
acteristic, FPR: False positive rate.
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Confusion Matrix

The confusion matrix method calculates the confusion matrix separately for each sensitive group.
It shows how the distribution of predictions and targets vary by group. Each cell in the confusion
matrix shows the fraction and number of observations belonging to the cell. It is optional to
include the number of observations in each cell. An example of the output plot can be seen in
subfigure 4.3a.

wFP Influence

The chosen false positive weight, wFP, influences the weighted misclassification rate WMR and
weighted misclassification quotient (WMQ). The chosen wFP can have a significant impact on
both the degree of measured unfairness and which group is deemed to be treated unfairly. The
method calculates and illustrates WMQ for all values of wFP (subfigure 4.3b). The method can
also show the weighted misclassification rate instead of the misclassification quotient.

ROC Curves

The fairness criterion separation is violated when the false positive and false negative rate differ
between the sensitive groups. This analysis shows the ROC curves by sensitive group, which
shows how the true positive and false negative rates change when changing the classification
threshold. The points symbolize the classifier of the chosen threshold, τ , and the crosses indi-
cate 95% Wilson confidence intervals of each group’s true positive rate and false negative rate,
respectively. An example of the output plot using a default threshold of τ = 0.5 for all subgroups
can be seen in subfigure 4.3c.

Calibration

A prediction model does not satisfy sufficiency when there is unbalance in the false discovery rate
or false omission rate between the sensitive groups. A way to fulfill sufficiency is to ensure that
the classifier is calibrated by group. The calibration plot, which can be seen in subfigure 4.3d,
and output data show how far the classifier is from being calibrated by group.

Prediction Rates

In order to satisfy independence, the fraction of predicted positives (or equivalently predicted
negatives) must be the same for all sensitive groups. The analysis supplies this fraction along
with a 95% Wilson confidence interval [Brown et al., 2001]. This illustrates how the independence
criterion may be violated and whether the difference could be attributed to random fluctuations
due to small group sizes. The analysis supplies the fraction of predictions of the most unfavorable
outcome based on the supplied wFP. An example of the output plot can be seen in subfigure 4.3e
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Figure 4.3: Visualizations created using the third level of BiasBalancer. Each plot enables the
user to further analyze an unfairness source.
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4.2 Fairness Analysis using BiasBalancer

In the following section, we demonstrate how BiasBalancer can be used to analyze unfairness
on four different datasets and seven different models. In the first section (section 4.2.1) we will
dive into the COMPAS dataset in a Jupyter Notebook showcasing the use of BiasBalancer. In
section 4.2.2 the remaining datasets and their corresponding models are analyzed focusing on
one level of BiasBalancer at a time.

4.2.1 COMPAS Example and Usage

The COMPAS dataset is analyzed using BiasBalancer in the tutorial notebook (found here in
the GitHub repository). The fairness analysis is performed with respect to race, and the analysis
supports the results found in the ProPublica analysis [Angwin et al., 2016]. We have chosen
to analyze the COMPAS predictions in a Jupyter Notebook because the COMPAS dataset is
widely known in the fairness community. The dataset, hence, serves as a good example case for
showcasing how to use BiasBalancer to potential users of the toolkit.

4.2.2 Modelled Examples

We used BiasBalancer on a variety of different models and datasets (see section 3.1) in order to
analyze how different types of unfairness are expressed in the analyses using BiasBalancer. In
the analysis, we will present the results one level at a time to allow for comparisons between the
datasets and models.

Level 1

Table 4.3 shows the number of test observations (n), the false positive weight (wFP), maximum
weighted misclassification quotient (Max WMQ), the group with most undesirable predictions
and prediction accuracy for all models. The false positive weight is chosen to be wFP = 0.9 for
the recidivism risk examples because a positive prediction could result in a longer sentence or
higher bail for the individual. The false positive weight is also chosen to be wFP = 0.9 in the case
of credit scoring. This is because a bad credit rating, which is encoded as Y = 1 in the datasets,
could mean individuals did not get access to loans for which they were financially suited.

The maximum weighted misclassification quotient (Max WMQ) in table 4.3 summarizes the
output of using the first level of BiasBalancer on each of the presented datasets. The measured
unfairness differs greatly between the datasets, and prediction algorithms for the Catalan Re-
cidivism dataset, COMPAS dataset, and the logistic regression model for the Taiwanese Credit
dataset have maximum weighted misclassification quotients above the typical threshold of con-
cern of 20%. The largest unfairness is present in the Catalan Juvenile Recidivism dataset, where
the maximum WMQ of juveniles from the region Maghreb is 204.0% and 205.1% higher than the
best-predicted group for the logistic regression and neural network, respectively. The prediction
models based on the German Credit Scoring dataset see the least discrimination with maximum
WMQ at 13.5% and 1.5%. There is no systematic pattern of whether a neural network or a
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logistic regression results in more biased predictions. It is interesting how the two models of
the Taiwanese Credit dataset can yield substantially different maximum weighted misclassifica-
tion quotients even though the accuracies are less than one percentage point apart. The neural
networks have substantially lower Max WMQ for the credit datasets.

Dataset Model n wFP Max WMQ Disfavored Group Accuracy

German Credit Logistic regression 1000 0.9 13.5% Female 74.4%

German Credit Neural network 1000 0.9 1.5% Female 72.9%

COMPAS Decile scores 4511 0.9 47.9% African-American 66.0%

Catalan Recidivism Logistic regression 4652 0.9 204.0% Maghreb 73.2%

Catalan Recidivism Neural network 4652 0.9 205.1% Maghreb 72.9%

Taiwanese Credit Logistic regression 6000 0.9 30.0% Male 81.0%

Taiwanese Credit Neural network 6000 0.9 10.0% Male 81.9%

Table 4.3: The table shows the number of test observations (n), the chosen false positive weight
(wFP), maximum weighted misclassification ratio (Max WMQ), most disfavored group and ac-
curacy for each combination of dataset and model type.

Level 2

Figures 4.4, 4.5 and 4.6 show the plots generated by the second level for each of the datasets
excluding the COMPAS data set, which was presented in the Jupyter Notebook. First, consider
the German Credit Score dataset; in the unfairness analysis of the logistic regression predictions
(Figure 4.4a) and neural network predictions (Figure 4.4b), both men and women see discrimi-
nation depending on the fairness criteria considered. The German Credit score dataset is small
and imbalanced (see figure 3.1), which leads to wide 95% confidence intervals on the group rates
across both classifiers. Even though the unfairness barometer contains values above the 20%
threshold, the confidence intervals overlap across all the rates. The results should therefore be
considered with great caution since small changes in the dataset or the model could significantly
change the results of the unfairness analysis. However, the dataset is included for completeness
since it is commonly used in the fairness literature.

The two classifiers predicting the creditworthiness in the Taiwanese credit score data set have
very similar accuracies (table 4.3), but the unfairness barometers are very different for the two
models. The barometer shows no unfairness of concern present in the predictions by the neural
network (figure 4.5b). On the contrary, the unfairness barometer points towards discrimination
of primarily men in the predictions by the logistic regression (Figure 4.5a). The visualizations
also show that the false negative rate is high for both groups and both classifiers, which is likely
be caused by the target class unbalance (see figure 3.2). The potential discrimination of men
seen in the unfairness barometer of the logistic regression is largely due to the violation of FPR-
balance. It is worth noting that the FPR is very small for both groups. This behavior shows
that small absolute values of the group rates to the left in the visualization can result in large
relative differences. The 95% confidence intervals are overlapping in almost all cases, but they
barely overlap for the two FPR in the analysis of the predictions by the logistic regression. It
indicates that the violation of the FPR-balance in the unfairness barometer (figure 4.5a) might
need to be investigated further to understand the unfairness present in the predictions.

The unfairness analysis of the predictions by the logistic regression (figure 4.6a) and the neu-
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Figure 4.4: Layer 2 visualizations of models on German Credit Scoring data.

ral network (figure 4.6b) on the Catalan Juvenile Recidivism dataset reveals large amounts of
unfairness for the juveniles originating from Maghreb. The unfairness barometers in the two
plots point toward the same main source of unfairness. The juveniles originating from Maghreb
have a much higher false positive rate, which results in large violations of the FPR-balance,
WMR balance, and separation criteria. The independence criterion suggests Maghreb juveniles
are discriminated against in both classifiers because more Maghreb juveniles receive positive
predictions, i.e., are classified as likely recidivists. Generally, it is worth noting that the data set
with many sensitive groups sees the largest amount of unfairness. With many subgroups, there
are more possibilities of unfairness since the difference between the smallest and largest rate will
increase due to increased variation. Some subgroups also see wide confidence intervals on their
group rates, highlighting the difficulty with unequal group sizes.
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Figure 4.5: Layer 2 visualizations of models on Taiwanese Credit Scoring data.

The sufficiency criterion and predictive parity criterion, which is a relaxation of sufficiency, were
among the three least violated criteria for all models except the German neural network. This
fits well with the bounds presented in section 2.2.5 that showed that the supervised learning
framework generally favors the sufficiency criterion.
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Figure 4.6: Layer 2 visualizations of the analysis of the predictions by logistic regression (a) and
neural network (b) on Catalan Juvenile Recidivism data.

Level 3

We will dive into a couple of relevant analyses from the third level of BiasBalancer for each
dataset to highlight the most relevant findings.

The second-level unfairness analysis of the predictions for the German Credit dataset showed
disfavoring against both men and women depending on the criterion considered. The dataset
is small and imbalanced, which was seen in the large confidence intervals on the absolute rates.
Figure 4.7 shows the confusion matrices based on the predictions by the two models. The logistic
regression correctly classifies one woman more than the neural network, and the two confusion
matrices for women are thus almost identical. The confusion matrices for the male subgroup
are more different when focusing on the percentage. However, inspecting the specific numbers
reveal that the neural network only misclassifies 14 males more than the logistic regression. This
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shows that small changes in the classification can result in quite large changes in the assessment
of unfairness when the dataset is small and imbalanced.

Unbalanced false positive rates are the main source of unfairness in the Taiwanese Credit dataset
logistic regression predictions. The predictions also suffer from large false negative rates (≈ 0.8).
Figure 4.8 shows that the ROC curves for the two sensitive groups are identical at TPR ≈ 0.5 and
FPR ≈ 0.1. This means that the FNR could be decreased from 0.8 to 0.5 while creating FPR-
balance by just changing the thresholds. Moreover, by mitigating the FPR-balance, one would
also mitigate separation since the separation criterion enforces both FPR and FNR-balance.

The dataset yielding the most unfair predictions is the Catalan juvenile recidivism dataset. The
predictions for juveniles from Maghreb are deemed unfair according to the FPR-balance, inde-
pendence, separation, and WMR-balance criteria. In figure 4.9c the ROC curve for Maghreb
juveniles follows the other ROC curves closely, showing that a change in threshold for Maghreb
juveniles could mitigate the violation of FPR-balance and separation. Figure 4.9b shows that
the independence criterion is violated because the Maghreb juveniles receive significantly more
predicted positives. However, the recidivism rate is also higher for Maghreb juveniles (see fig-
ure 3.4). The WMR-balance criterion also points to possible discrimination of Maghreb juveniles
with max WMQ = 204.0% for the logistic regression. This evaluation rests on the assumption
that a false positive prediction is much more unfavorable than a false negative, which is parame-
terized with wFP = 0.9. However, if a positive prediction of recidivism resulted in positive effects
such as better access to guidance and education rather than longer jail times, the picture could
be the opposite. Figure 4.9a shows that the choice of false positive weight is crucial because the
discrimination of Maghreb juveniles quickly decreases if wFP is lowered.
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Figure 4.7: Confusion matrices for males and females in the German Credit Data with the logistic
regression in (a) and neural network in (b).
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Figure 4.8: ROC curves by sensitive group of the logistic regression predictions on the Taiwanese
Credit data. The points symbolize the classifier of the chosen threshold and the crosses indicate
95% Wilson confidence intervals of the rates.
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Figure 4.9: Plots for fairness analyses from level three of BiasBalancer used on logistic regression
predictions of Catalan juvenile recidivism. Subfigure (a) shows how the chosen false positive
weight influences the WMQ , subfigure (b) shows the percent predicted positive for each sensitive
group, and subfigure (c) shows the ROC curves by sensitive group. On the ROC curves, the
points symbolize the classifier of the chosen threshold, and the crosses indicate 95% Wilson
confidence intervals of the rates.
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Chapter 5

Case Study: CheXpert

In the previous chapter, we saw several examples of how to use BiasBalancer on smaller datasets.
In this section, we present a case study of the CheXpert dataset, which contains chest x-ray
images. The aim of the case study is two-fold: We want to show how to use BiasBalancer to
detect unfairness in the predictions from a predictive model fitted on a larger dataset, and we
want to investigate more in-depth how a predictive model created to maximize performance with
no fairness criteria in mind fares when inspecting its predictions in a fairness analysis.

Recent work by [Larrazabal et al., 2020] and [Banerjee et al., 2021] has explored the CheX-
pert dataset considering gender and race respectively. [Larrazabal et al., 2020] trained different
types of convolutional neural networks for the classification of diseases in the CheXpert x-rays
solely using training sets of either male or female patients. Based on the area under the ROC
curve (AUC), they showed that regardless of the type of model or the gender of the patients
present in the test set, the models were significantly better at predicting the presence of the
diseases for the gender from which the model had seen training data. This difference was sta-
tistically significant for the majority of diseases. The work highlights the importance of diverse
representation in data. [Banerjee et al., 2021] have recently shown that deep convolutional neural
networks can predict a patient’s race based on medical images alone, including the radiographs
from the CheXpert dataset. They write that the classification of race based on x-ray images is
not possible for trained radiologists, and the study shows that even when seriously compromising
the quality of the image, the neural network is still able to detect the race of the patient. It causes
concern because it suggests that the models can see patterns not visible to human experts. Thus
it is possible that humans unknowingly could build models for disease classification that also
exploit these patterns introducing a risk of different treatment based on a patient’s race. The
authors of [Glocker and Winzeck, 2021] further investigate if there is any indication that deep
convolutional neural networks used for disease detection in the CheXpert dataset use sensitive
information for classification. They try to answer what kind of information is used by the neural
networks and also comment on the work done by [Banerjee et al., 2021] and argue that more
extensive analyses are needed.

The findings in the cited articles above inspired us to use the CheXpert dataset in the case
study. The dataset is of a decent size, and both the sex and race of the patients are relevant to
consider when analyzing potential unfairness in the predictions of a model trained on the dataset.
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Figure 5.1: Example of a chest radiograph from [Irvin et al., 2019].

The CheXpert dataset is currently used for research in fair machine learning, which makes it
interesting to use in order to make our own contribution to this debate. Moreover, many of the
articles encouraged further investigation and caution when deploying models for medical image
classification. We will act on this encouragement and thus, in this chapter, present the CheXpert
dataset, create a model for classification and carry out a fairness analysis focusing on race and
sex.

5.1 Dataset

The CheXpert dataset consists of 224,316 chest radiographs of 65,240 patients [Irvin et al., 2019].
The chest radiographs are from Stanford Hospital and were taken between October 2002 and
July 2017. Each image comes with 14 labels corresponding to 14 diseases or conditions. The label
indicates whether the disease or condition is present, unmentioned, uncertain, or not present.
The labels were extracted from the free text radiology reports of the images using an automated,
rule-based labeler. An example of a chest radiograph from the CheXpert dataset is seen in
figure 5.1.

Since the focus of this thesis is unfairness in binary classification, we choose a single label to
predict from the x-ray image. We have chosen cardiomegaly (enlargement of the heart) because it
is well represented in the dataset with an overall prevalence of 12.24%. Moreover, cardiomegaly
was one of the diseases showing differences in AUC for every train-test combination of the
genders in the analysis by [Larrazabal et al., 2020] regardless of the chosen model. The 14
labels in the CheXpert dataset are encoded as either present(positive), not-present (negative)
or uncertain. [Irvin et al., 2019] showed that the binary encoding U-zeros, where uncertain
labels are mapped to not-present, resulted in the best model performance for cardiomegaly
detection. [Larrazabal et al., 2020] also used the U-zeros uncertainty encoding in their study.
Hence, we will use this uncertainty encoding as well.

The CheXpert dataset includes metadata containing the sex and age of the patients. As an
addition to the CheXpert data set, the CheXpert Demo Data is published by Stanford University
Center for Artificial Intelligence in Medical imaging [Stanford AIMI, 2021]. The Demo Data
includes age, gender and the self-reported racial and ethnic identity of 65,401 patients. A total
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of 301 patients from the CheXpert dataset were not present in the demographic data. In order to
make a fairness analysis of the model predictions, we will use attributes from both the metadata
of the CheXpert dataset and the CheXpert Demo Data. The two sources of demographic data
are merged using the unique patient id. The patients not included in both datasets are omitted
from the fairness analysis.

Patients in the CheXpert dataset can have gotten more than one radiograph taken in the 15-year
period from 2002 to 2017, and their age reported in the metadata therefore differs across their
recorded x-rays. On the contrary, only one age per patient is recorded in the CheXpert Demo
Data. We have chosen to omit 17 observations where the absolute age difference between the age
registrations in the datasets exceeds 15 years since this is the maximum possible age difference
in the 2002-2017 period.

Please note that we only omit the above-mentioned observations when performing the fairness
analysis and not when training the models. This is because the model does not use the metadata
or the demographic data, and nothing suggests issues with the specific radiographs. However,
discrepancies in the demographic data might impact the results of the fairness analysis.

The sex and the gender of the patients are available in the CheXpert metadata and the Demo
data, respectively. We choose to make the fairness analysis based on the recorded sex and not
gender because cardiomegaly is a physical condition, and we deem that the biological sex can
have a larger influence on the risk of cardiomegaly than gender. There are only three observations
where the two attributes do not coincide.

The categories in the race attribute are the patients’ self-reported racial identities. They fall
within 23 different categories, where some apply to only a few individuals. The ethnicity attribute
contains six categories mainly divided into Hispanic, Non-Hispanic, and not reported. We choose
to pre-process the race attribute following the approach in [Glocker and Winzeck, 2021], such
that we aggregate the labels to the following four categories: White, Black, Asians, and Other
or Unknown. In [Glocker and Winzeck, 2021] and [Banerjee et al., 2021], all individuals whose
ethnicity is not Non-Hispanic are excluded. We choose not to exclude observations based on the
ethnicity attribute since it would exclude almost 1/3 of all available observations. We deemed it
most important not to exclude any observations because, unlike in [Banerjee et al., 2021], we do
not need high-quality labels for predicting race but instead only for determining groups for the
fairness analysis.

5.2 Modelling

We model the presence of cardiomegaly in frontal chest radiographs from the CheXpert dataset
using the convolutional neural network DenseNet [Huang et al., 2018]. We use the DenseNet-121
architecture, available on Pytorch Hub (repository = ’pytorch/vision:v0.10.0’), which is pre-
trained on ImageNet [Deng et al., 2009]. In order to use the network for binary classification
(cardiomegaly versus no cardiomegaly), the final classification layer is replaced with a new clas-
sification layer with one output feature. Binary cross entropy is used as the loss function. A
benchmark model is implemented following the method in the recent paper [Larrazabal et al.,
2020]. The model is trained using ADAM with standard parameters (β1, β2) = (0.9, 0.999) and
with an initial learning rate of 0.001 [Kingma and Ba, 2015]. The learning rate is decreased by
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Image Aug. Dropout (p) Weight decay (λ) AUCval Lossval AUCtrain Losstrain

None 0.2 0.000 0.854 0.273 0.876 0.255

Simple 0.2 0.000 0.851 0.271 0.874 0.256

Extensive 0.0 0.000 0.851 0.272 0.870 0.260

Simple 0.0 0.000 0.850 0.272 0.874 0.257

Extensive 0.4 0.000 0.849 0.274 0.863 0.265

Extensive 0.2 0.000 0.848 0.273 0.859 0.269

None 0.0 0.000 0.842 0.282 0.869 0.261

Simple 0.4 0.000 0.835 0.283 0.840 0.282

None 0.4 0.000 0.833 0.286 0.816 0.297

None 0.2 0.001 0.830 0.292 0.809 0.300

None 0.0 0.001 0.821 0.291 0.841 0.282

Extensive 0.0 0.001 0.819 0.294 0.820 0.297

Simple 0.0 0.001 0.795 0.307 0.786 0.314

Extensive 0.2 0.001 0.784 0.330 0.755 0.328

Simple 0.2 0.001 0.772 0.322 0.746 0.332

None 0.0 0.010 0.766 0.326 0.742 0.336

Extensive 0.4 0.001 0.753 0.344 0.717 0.343

Simple 0.4 0.001 0.740 0.348 0.721 0.342

None 0.4 0.001 0.719 0.344 0.693 0.350

Simple 0.0 0.010 0.714 0.346 0.685 0.353

Extensive 0.0 0.010 0.685 0.353 0.656 0.360

Simple 0.4 0.010 0.581 0.370 0.567 0.372

Extensive 0.4 0.010 0.574 0.372 0.539 0.376

Simple 0.2 0.010 0.500 0.373 0.485 0.375

None 0.4 0.010 0.500 0.373 0.485 0.375

None 0.2 0.010 0.500 0.373 0.486 0.375

Extensive 0.2 0.010 0.500 0.373 0.485 0.375

Table 5.1: Overview of all models trained on the CheXpert dataset. For each model the type of
image augmentation, the dropout probability p, and the amount of weight decay λ is shown. The
area under the ROC curve (AUC) and binary cross entropy loss is listed for both the validation
and train set.

a factor of 10 when an epoch did not improve the validation loss. The images are reduced to
(224 × 224) pixels and converted into RGB images. The images are flipped horizontally with
probability p = 0.5.

We train 27 additional models aiming to improve the benchmark model. The additional models
introduce dropout, weight decay, more extensive image augmentation, and no image augmen-
tation. We try the dropout values p = {0, 0.2, 0.4} and weight decay λ = {0, 0.01, 0.001}. The
extended image augmentation includes random horizontal flipping (p = 0.25), random affine
transformation (degrees ∈ [−15, 15] and scale ∈ [0.9, 1, 1]), random adjustment of sharpness
(sharpness factor = 2), and random rotation (degrees ∈ [−15, 15]). The image augmentations
are applied sequentially to the image, each with probability p = 0.25. All models are trained on
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the same split of the data, where 20% of patients were set aside for testing, and the remaining
80% of the patients are split into a training (80%) and validation (20%) set. All images of the
same patient are in the same split, ensuring no data leakage between the sets. We verify that
the prevalence of cardiomegaly in the training, validation, and test set is similar (train: 12.38%,
val: 12.32%, test: 11.70%). We choose the best model as the one with the largest area under the
ROC curve (AUC) for the validation set. The test set is set aside and is not looked at until the
best model is selected.

Table 5.1 shows the performance of all trained models sorted by decreasing validation AUC.
The benchmark model is highlighted using italics and the best performing model is highlighted
in bold. Based on the validation AUC (AUCval = 0.854), the best model is chosen to be the
model with dropout p = 0.2, no image augmentation, and no weight decay. The best model
improves on the benchmark model only slightly, which had a validation AUC of AUCval = 0.85.
Generally, we see that the models without weight decay perform the best and using some image
augmentation or some dropout seems to improve the model.

The chosen model is used for making the predictions analyzed in the fairness analysis. Since
the dataset is unbalanced, and false negatives come with a higher cost than false positives, the
threshold used for making the predictions was chosen as the threshold, which led to a false
positive rate of 20% on the training set following the method used in [Glocker and Winzeck,
2021]. The threshold, τ , was calculated to be τ = 0.1002. The predictions made on the test set
using this threshold are analyzed with respect to fairness in the following section.

5.3 Fairness Analysis

In this section, the best performing DenseNet model is analyzed with respect to fairness for
sensitive groups based on sex, race, and a combination of the two. Firstly, we will present an
overview of the results, which is followed by three sections. In these sections, we analyze the
underlying distribution of the true labels across sensitive groups and present the fairness analysis
using BiasBalancer on each of the three possible sensitive attributes.

Table 5.2 shows the weighted misclassification rate (WMR), the weighted misclassification quo-
tient (WMQ), the area under the ROC curve (AUC), and the accuracy computed on the test
set for each sensitive subgroup in the three fairness analyses. The WMR has been computed
with wFP = 0.1, which puts a large emphasis on false negatives. This choice reflects that an
undiscovered disease is the worst outcome when using predictive models for diagnosing. The
smallest and largest value of WMQ, AUC, and accuracy are highlighted with italic and bold,
respectively. We see that Black patients have the highest WMQ both when analyzing race alone
and the combination of race and sex. In the analysis wrt. sex, women have the highest, although
very low, WMQ. Generally, the group with the highest accuracy score also has the highest AUC.
In two experiments, the best-predicted group also has the smallest WMQ. In the analyses inves-
tigating race and the combination of sex and race, the subgroup with the largest WMQ also has
the lowest accuracy. However, the AUC for Blacks in the fairness analysis concerning race is the
second highest.
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Sensitive Group Subgroup n WMR WMQ % AUC Accuracy %

Sex
Female 15636 0.049 2.3 0.857 80.2

Male 21917 0.048 0.0 0.852 78.9

Race

Asian 3857 0.044 0.0 0.866 80.7

Black 1956 0.055 24.1 0.859 75.3

Other 9763 0.048 9.0 0.853 79.2

White 21977 0.048 7.4 0.850 79.7

Race and Sex

Asian Female 1681 0.049 19.9 0.846 79.7

Asian Male 2176 0.041 0.0 0.879 81.6

Black Female 1069 0.054 30.9 0.877 75.8

Black Male 887 0.057 39.7 0.823 74.7

Other Female 3990 0.050 23.4 0.854 79.2

Other Male 5773 0.047 15.0 0.852 79.2

White Female 8896 0.047 15.1 0.850 81.2

White Male 13081 0.048 17.8 0.850 78.7

Table 5.2: Table summarizing the first level of the fairness analyses carried out with BiasBalancer
using wFP = 0.1. The fairness analyses investigates unfairness in subgroups based on sex, race,
and a combination of the two. The bold font indicates the largest value of a measure within an
analysis and italic font indicates the smallest.

5.3.1 Sensitive Group: Sex

The authors of [Larrazabal et al., 2020] showed how different proportions of male and female
images in the training set of a neural network trained for multi-label prediction on the CheXpert
dataset resulted in significantly different performances across the two recorded genders. Because
differences across gender likely also mean differences across sex, [Larrazabal et al., 2020] inspired
us to analyze the potential unfairness w.r.t. sex when training DenseNet using all data in a
standard training-validation-test split scenario.

Figure 5.2c shows a table with the number of observations in the two sexes as well as the
proportion of cardiomegaly cases, including a 95% Wilson confidence interval across the entire
dataset. The numbers in the table are also visualized in the figures 5.2a and 5.2b. The dataset
contains more male observations than female observations, and there is a higher percentage of
men with cardiomegaly (12.71%, CI: [12.51%, 12.90%]) compared to women (11.58%, CI: [11.35%,
11.80%]) in the dataset. Note that these confidence intervals are calculated under the assumption
of independent observations. However, there are several images from the same patient in the
dataset, and these observations are hence dependent. The average number of images per patient
is 2.96 (median = 1), while the maximum is 91. Due to this, the confidence intervals presented
in this analysis of the CheXpert dataset are too narrow. However, we have decided to include
the intervals during the analysis because they still accurately indicate when differences are not
significant.

Table 5.2 showed the unfairness analysis from the first level of BiasBalancer. Females saw the
largest WMQ, but only at 2.3%, and females had the highest accuracy and AUC ROC. This could
indicate an overall better classifier for female patients, but a larger fraction of false negatives

58



Male Female
0

20000

40000

60000

80000

100000

120000
Nu

m
be

r o
f O

bs
er

va
tio

ns
CheXpert, target: Cardiomegaly

No Cardiomegaly
Cardiomegaly

(a)

Female Male
0%

20%

40%

60%

80%

100%
Percentage with Cardiomegaly

95% CI

(b)

Sex N Has Cardiomegaly CI

Male 111595 14181 (12.71%) [12.51%, 12.90%]

Female 78564 9095 (11.58%) [11.35%, 11.80%]

Total 190159 23276 (12.24%) [12.09%, 12.39%]
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Figure 5.2: Number of observations and percentage with presence of cardiomegaly broken down
by sex. The figures (a) and (b) visualizes the numbers shown in the table (c).
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Figure 5.3: The second level visualization of the CheXpert dataset analyzing unfairness with
respect to sex.

could be yielding the larger value of WMQ. Figure 5.3 shows the results from the second level
of BiasBalancer. We see that both sexes have a false positive rate close to 0.2, which is the
value used when deciding the threshold based on the training data. The difference between
the sexes is small for all rates, and the confidence intervals overlap for all rates except for the
false positive rate where the intervals are close to overlapping (Female: 0.190 [0.184, 0.197],
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Male: 0.206 [0.200, 0.212]). The relative differences are all smaller than the 20% limit of concern.
Based on the analysis, the predictive model does not appear to discriminate based on sex for any
of the fairness criteria.

5.3.2 Sensitive Group: Race

The remarkable accuracy of predictive models trained for race prediction from medical x-rays
raised the concern that models trained for disease detection might also use racial information in
medical images [Banerjee et al., 2021]. Thus, we decided to investigate potential unfairness with
respect to race in the trained DenseNet model for cardiomegaly detection. Figure 5.4 shows the
number of observations for each race in the entire dataset and the proportion with cardiomegaly,
including a 95% confidence interval. The dataset is imbalanced with respect to race, and there
are more than 10 times more observations of White patients than Black patients. Moreover, a
total of 19.81% of chest radiographs of Black patients are labeled with cardiomegaly compared to
the other groups where Asians have the second most incidences (12.76%) followed by the images
with race Other (11.82%) and White (11.64%). The only two groups with overlapping confidence
intervals are Other and White.
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Race N Has Cardiomegaly CI

White 107487 12516 (11.64%) [11.45%, 11.84%]

Other 52990 6264 (11.82%) [11.55%, 12.10%]

Asian 19636 2506 (12.76%) [12.30%, 13.24%]

Black 10046 1990 (19.81%) [19.04%, 20.60%]

Total 190159 23276 (12.24%) [12.09%, 12.39%]

(c)

Figure 5.4: Number of observations and percentage in the CheXpert dataset with presence of
cardiomegaly broken down by race. The figures (a) and (b) visualizes the numbers shown in the
table (c).

In the overview in table 5.2, we saw that Blacks see the highest WMQ (24.1%) and smallest
accuracy, but not the smallest AUC. The high WMQ and large AUC indicate that Blacks are
potentially seeing a large number of false negatives relative to their group size but have a good
classifier based on the group’s ROC curve. Figure 5.5 shows the results from the second level of
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BiasBalancer. The left subfigure shows the rates are similar for Whites, Asians, and the group
Other, while the rates for Blacks stand out with higher false positive rate and false omission
rate and lower false negative rate and false discovery rate. Therefore, the predictions violate
both the separation criterion (incl. the relaxations equal opportunity and FPR balance) and the
sufficiency criterion. Both criteria suggest unfairness toward both Whites and Blacks.

Let’s focus on the false negative rate and false omission rate, because a false negative in this
medical setting is considered more severe than a false positive. A higher proportion of Blacks
than Whites have cardiomegaly, which decreases the false negative rate for Blacks because the
false negative rate has the number of true positives in the denominator. The false omission rate
has predicted negatives in the denominator. This rate is higher for Blacks, most likely because
a higher rate of actual positives should lead to a lower rate of predicted negatives relative to
Whites. The pattern is very similar to the pattern seen in the COMPAS data (see figure A.1),
where Blacks also had a higher rate of actual positives. However, the setting is different since
a false positive was the most severe outcome in the COMPAS analysis because it could lead to
bail being unrightfully denied offenders.
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Figure 5.5: The figure shows the second level visualization of the CheXpert dataset with race as
the sensitive attribute.

Because the unfairness barometer indicates unfairness above the usual 20% threshold, we will
dive further into the analysis using the third level of BiasBalancer. The relative unfairness
according to WMR-balance is not much larger than 20%, and the violation of this criterion
may be caused by a larger amount of false negatives relative to group size for Black patients.
The confusion matrices for each subgroup show that Blacks do indeed have a slightly higher
percentage of false negatives at 3.1% compared to Asians (2.6%), Whites (2.8%) and Others
(2.8%). The matrices are seen in the appendix as figure A.2. It should be noted that the 3.1%
false negatives correspond to only 61 images from 52 Black patients.

According to the unfairness barometer, the biggest amount of relative unfairness is toward Whites
using the criterion equal opportunity. This means that Whites with cardiomegaly have a smaller
probability of being diagnosed correctly than Blacks. This can be further investigated using the
group-specific ROC curves, which can also shed light on the FPR-balance and separation criteria.
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The ROC curves are seen in figure 5.6 including points indicating the chosen classifier with the
threshold τ = 0.1002. Recall, that the points should align horizontally (equal TPR) for equal
opportunity to be satisfied, align vertically (equal FPR) for FPR-balance to be satisfied, and lie in
the intersection between the four ROC curves for separation to be satisfied (equal FPR and TPR).
The predictions for White patients are unfair due to the lower true positive rate (corresponding to
a higher false negative rate), and predictions for Black patients are unfair due to the higher false
positive rate. The separation criterion thus points towards two different groups being unfairly
treated. Since false negatives are deemed more serious than false positives, one could argue for
putting more emphasis on the part of the separation criterion suggesting unfair predictions for
White patients. Apart from the ROC curve for Asian patients, the curves are overall very similar.
This means it is possible to find group-specific thresholds such that separation is closer to being
satisfied. The disparity could be mitigated by increasing the threshold for Blacks, which would
move the rates for Blacks closer to the rates of the remaining races. This mitigation possibility
will be further discussed in section 5.4.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC Curves (Analysis of Separation)

Asian (  = 0.1)
Black (  = 0.1)
Other (  = 0.1)
White (  = 0.1)

Figure 5.6: ROC Curves by each race. The point indicates the chosen DenseNet model corre-
sponding to a threshold of τ = 0.1, which yielded a FPR of 0.2 when evaluating on the entire
training set.

The unfairness barometer of BiasBalancer also shows a violation of the sufficiency criterion, where
both Whites and Blacks experience unfair treatment. Sufficiency is violated when the relative
difference in FDR and FOR rates is too large across the sensitive subgroups. The relaxation,
predictive parity, only depends on the false discovery rate, and it is not seriously violated in the
unfairness barometer. The absolute rates show that Blacks do have a smaller false discovery
rate (FDR), but because the FDR is very high for all subgroups, the relative difference seen in
the upper right plot of figure 5.5 becomes smaller than 20%. Thus, it is the relative difference
in false omission rates (FOR) that drives the violation of sufficiency. The false omission rate
is generally low for all subgroups, but it is 40% larger for Blacks compared to Asians. Hence,
a substantially higher fraction of the predicted negatives for Blacks are false negatives. Since
false negatives are deemed more unfavorable than false positives, one could argue that overall
the sufficiency criterion points toward unfairness towards Blacks.
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Figure 5.7: Calibration plot by race on the predictions of cardiomegaly using DenseNet. The
vertical lines indicates the interval created by one standard error from the estimated true prob-
ability.

A calibration plot shows the influence of the threshold on the false omission rate and false
discovery rate. Figure 5.7 shows that the calibration curves are somewhat similar for patients
of all races. The curves lie close to the diagonal line, but generally, the true probability lies
below the predicted probability for predicted probabilities larger than 0.4. It indicates that the
model generally overpredicts the risk of cardiomegaly for all races. Since the threshold was set
to τ = 0.1002, the leftmost point of each line corresponds to the predicted negatives, while the
remaining observations were predicted as positive. The higher false omission rate for blacks, and
thereby the violation of sufficiency, is seen in the plot, when looking closely, by the leftmost point
for Blacks being slightly higher than the others. Blacks have a larger true probability of having
cardiomegaly compared to their predicted probability for predicted scores between 0.1 and 0.3.
Consequently, increasing the threshold, which was previously discussed, could exacerbate the
disparity in false omission rates for Blacks.

In summary, the conclusion of the unfairness analysis with respect to race depends on whether
most weight is put on the sufficiency or separation criterion since the two criteria point in different
directions. This rather complicated example shows how the different criteria can yield different
results.

5.3.3 Sensitive Group: Race and Sex

The fairness analysis of sex showed no significant discrimination against any of the sexes, while
the analysis of race showed that the result heavily depended on the fairness criterion used.
Since both information on sex and race is available, we found it interesting to further divide
the sensitive groups such that they include both sex and race. Figure 5.8 shows the number of
observations in each category and the fraction of cardiomegaly cases. A larger fraction of men
than women have cardiomegaly for all races except for Blacks, and the highest prevalence of all
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groups is for Black women (20.87%). The confidence intervals of the fraction of cardiomegaly
cases overlap for men and women of the same race except for Whites.
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(b)

Race sex N Has Cardiomegaly CI

White Male 64168 8134 (12.68%) [12.42%, 12.94%]

White Female 43320 4382 (10.12%) [9.83%, 10.40%]

Other Male 31203 3640 (11.67%) [11.31%, 12.03%]

Other Female 21787 2624 (12.04%) [11.62%, 12.48%]

Asian Male 11133 1451 (13.03%) [12.42%, 13.67%]

Asian Female 8503 1055 (12.41%) [11.72%, 13.13%]

Black Male 5093 956 (18.77%) [17.72%, 19.87%]

Black Female 4955 1034 (20.87%) [19.76%, 22.02%]

Total 190162 23276 (12.24%) [12.09%, 12.39%]

(c)

Figure 5.8: Number of observations and percentage with presence of cardiomegaly broken down
by race and sex. The figures (a) and (b) visualizes the numbers shown in the table (c).

Figure 5.9 shows the level 2 visualization from BiasBalancer when considering both sex and race.
Most noticeable is that Black men have a much higher false negative rate and false discovery
rate compared to Black women. The rates for Black men are higher than the rates for Blacks
overall, as seen in figure 5.5. This difference especially stands out because the prevalence for
Black men and women was similar and with overlapping confidence intervals (figure 5.8). Due
to this surprisingly large difference, the prevalence of cardiomegaly in the test set compared to
the training set for Black men was investigated. The prevalence of cardiomegaly in the test set
for Black men was 14.32% (CI: [12.17%, 16.78%]), which deviates significantly from the training
data, where the prevalence was 18.95% (CI: [17.65%, 20.32%]). The big difference in prevalence
in the training and test data is problematic since disparities seen in the unfairness analysis may
largely be attributed to this distributional difference and not reflect actual disparities in the
predictive model. Therefore, we will not dive further into the unfairness analysis based on the
combination of race and sex. The underlying distribution of the prevalence in the test and
training splits can be seen in table A.3 in the appendix. Note that this issue is not present for
the analyses with respect to only race and only sex.
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Figure 5.9: The second level visualization of the CheXpert dataset, where fairness is analyzed
with BiasBalancer and sensitive groups based the sensitive attribute encoding both sex and race.

5.4 Discussion of Case Study

This section discusses the results of the CheXpert fairness analysis, the chosen threshold, and
different mitigation strategies in the context of the CheXpert predictive model.

5.4.1 Interpretation of results

The fairness analysis investigating fairness across the sexes showed no unfairness of concern. The
authors of [Larrazabal et al., 2020] showed that training on severely unbalanced data concerning
sex seriously compromises the quality of the predictions for the poorly represented sex. Thus,
representative data is crucial for the performance of a predictive algorithm and, ultimately,
fairness. The CheXpert dataset is slightly imbalanced with 58.6% men and 41.4% women, but
the imbalance does not seem to seriously affect the predictions for women. This suggests that
there might be enough diversity in the dataset to train a good predictive model for both men
and women.

The result of the fairness analysis investigating race is less straightforward to interpret. In the
analysis, false negatives were considered the most unfavorable outcome for an individual. Given
this setting, the fairness criteria based on the false negative rate and false omission rate are most
concerning. Based on this, the separation and sufficiency criteria suggested disfavoring of Whites
and Blacks, respectively. The proposed overall unfairness measure in this thesis, WMR-balance,
showed discrimination towards Blacks, which reflects that this is the group with the highest
proportion of false negatives. Moreover, the prediction accuracy was lowest for Blacks, which
could be caused by the relatively small amount of Blacks in the dataset (≈ 10 times fewer than
Whites). Thus, many fairness measures suggest that Blacks receive the worst predictions, but on
the other hand, the single most violated fairness criterion is equal opportunity, which suggests
that Whites receive unfair predictions. Moreover, one could argue that the false negative rate is
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most important, because it measures the proportion of individuals with cardiomegaly where the
condition went undetected. However, the high relative false negative rate for Whites is caused by
the low rate seen for Blacks, which is the reference group. The results of this fairness analysis is
an opportunity to contemplate what makes the different definitions of unfairness point towards
different unfairness issues in the predictions and how these issues affect patients in the specific
case of cardiomegaly detection.

The last fairness analysis with sensitive groups based on the combination of sex and race was
inconclusive because the prevalence of cardiomegaly for Black males in the test set did not reflect
the prevalence in the training data. In order to perform a fairness analysis based on both sex
and race with the CheXpert dataset, it would be necessary to stratify the sampling of the train,
validation, and test set such that all combinations of race and sex had a similar prevalence of
cardiomegaly in the sets. This emphasizes that caution should be taken when analyzing datasets
with small sensitive groups, further highlighting the need for representative data.

5.4.2 Predictive Model

The results of the fairness analysis naturally depend on the predictive model. In this section, the
choices made during the model development are discussed. Only roughly 12% of the images in
the dataset are positive observations, which means the target variable is imbalanced, and the pre-
dictive model does not see many cases of cardiomegaly compared to cases without cardiomegaly.
One way to handle this is to assign a higher weight to the positive samples with cardiomegaly
during the training phase such that the model is more exposed to radiographs with instances of
cardiomegaly.

Instead, the class imbalance was handled by adapting the threshold. The classification threshold
was set based on the false positive rate such that FPR =

FP
N

= 0.2 across the training set.
Consider a scenario where individuals classified with cardiomegaly get called in for further ex-
aminations. By choosing a threshold corresponding to FPR = 0.2, we thus allow 20% of the
people without cardiomegaly to be called into additional examinations with the hope of conse-
quently offering further examinations to a higher proportion of the patients with cardiomegaly.
Instead of choosing the threshold based on the false positive rate, the threshold could be based
on the false discovery rate, FDR =

FP
PP

. Choosing the threshold such that FDR is at a certain
level would control how large a proportion of the people we call in for extra examination is
healthy - this could be important if extra examinations require scarce resources. The threshold
choice affects the model’s predictions and fairness, and it is therefore important that data sci-
entists cooperate with people with domain knowledge in the specific task area, e.g., doctors and
hospital staff, when choosing the threshold. We did not collaborate with such experts, and in-
stead, the choice of using FPR was inspired by the work in [Glocker and Winzeck, 2021], where
race-specific thresholds were chosen such that FPRa = 0.2 ∀a ∈ A. We did not choose race
or sex-specific thresholds because the objective was to analyze the fairness of a model trained
without considering sensitive groups.
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5.4.3 Mitigation of Unfairness

Identifying and quantifying unfairness in predictive models is not the only research area within
machine learning fairness. Another area is the mitigation of such biases and unfairness. Mitiga-
tion is a vast research field, and thoroughly explaining and using mitigation techniques is outside
the scope of this thesis. However, it is relevant to briefly consider them in the context of the
CheXpert case study as we saw unfairness in our model when analyzing it using BiasBalancer
w.r.t. race. The available mitigation techniques mainly fall into three categories: Pre-processing,
in-processing, and post-processing [Barocas et al., 2019].

Pre-processing consists of various data transformations applied before training a model on the
data. One of these methods is reweighing, which weighs each group differently in order to ensure
equal base rates and can thus be used to mitigate violation of the independence criterion [Kamiran
and Calders, 2012]. We did not see any issues w.r.t. the independence criterion, and one might
argue that, given the different prevalence of cardiomegaly across both sex and race in the dataset,
this might not be a desirable approach.

An example of in-processing approaches is to constrain the optimization at training time [Barocas
et al., 2019]. Recently, different approaches to using adversarial learning to mitigate biases
have been developed. [Zhang et al., 2018] uses a neural network for the prediction task and the
adversary to model the protected attribute. The optimization is carried out using an objective to
maximize the accuracy of the prediction task while minimizing the ability to predict the sensitive
attribute. [Madras et al., 2018] also uses adversarial learning by using an encoder structure to
learn latent representations of the input data such that the target can be predicted by the
classifier from the latent representation, but the adversary cannot predict the sensitive attribute
from this latent representation. Such methods to mitigate bias could have been very interesting
to investigate and evaluate using BiasBalancer. Especially since [Banerjee et al., 2021] found
that algorithms could predict race from the CheXpert chest radiographs in various settings
and resolutions of the images. Investigating the results of using such in-processing mitigation
techniques is left as potential future work.

The last approach to mitigation is post-processing. Post-processing does not require re-training
the model, which is an advantage if the training process is complex or we do not have access to
it. [Hardt et al., 2016] presented a post-processing step along with the fairness criteria equalized
odds and equal opportunity. The criteria can be satisfied by choosing group-specific thresholds.
[Vyas et al., 2020] criticizes the use of race-specific correction of models for medical purposes and
encourages researchers to think about whether such corrections relieve or exacerbate existing
biases in society. The race-specific ROC curves showed that the current threshold results in a
larger true positive rate for Blacks compared to other races. This means changing the threshold to
satisfy separation would result in fewer correctly classified cases of cardiomegaly in a historically
discriminated group.

The most common source of unfairness in predictive models is that minority groups are poorly
represented in the training data. Hence, the best mitigation approach is to obtain representative
data of high quality. This is not an easy task and may even be impossible in some cases. The
results indicated that the small number of observations of Black individuals could have affected
both the fairness analysis and accuracy for the group. Only 7.1% of the population in the
state of California, which is where Stanford hospital is located, identify as African American
[United States Census Bereau, 2021]. This is likely to impact the patient demography in the
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CheXpert dataset and potentially the fairness of the model. Representative data is crucial when
algorithms are distributed globally as the risk of them influencing the lives of the individuals
poorly represented in the training data increases.
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Chapter 6

Discussion

Throughout this thesis, we have seen how BiasBalancer enables making more nuanced fairness
analyses of predictive algorithms. The tool comes with some design choices discussed in the first
discussion section. The tool can not stand alone, and the inherent limitations of BiasBalancer
are discussed in the second section.

6.1 Design Choices

The weighted misclassification quotient is constructed such that a perfect classifier is always
evaluated to be fair. This behavior relies on the strong assumption that the provided labels are
correct and fair. This may not always be the case, but the assumption is a necessary condition
for all observational fairness criteria. Moreover, the weighted misclassification rate is a function
of the chosen false positive weight, wFP, which is allowed to be in the range [0, 1]. Hence, a
misclassification is considered an unfavorable outcome. There may be contexts in which this
is not always true. For example, an unwarranted college admission given to an unqualified
individual could improve the individual’s life drastically. However, one could argue that if the
admission was a good outcome for the individual, the individual was actually qualified, and the
prediction was therefore correct. Hence, this design choice again relies on the assumption that the
outcome labels are considered correct and fair. Choosing a common false positive weight for all
subgroups also assumes that every group values the potential outcomes similarly. Different people
are likely to agree on the severity of a false positive when using models to predict potentially
life-threatening situations, but the task becomes more difficult in situations where it is less clear
what the negative outcome is.

The criteria used in the unfairness barometer are originally formulated as hard constraints en-
forcing exact equality between groups. When converting the criteria to a continuous, instead of
binary, measure, we have chosen to use the relative rate. For a rate r and sensitive group a,
the relative rate is calculated as RRa(r) = ra−rmin

rmin
⋅ 100%, where rmin = mina∈A ra. Another

natural choice would have been to use differences between the group-wise rates calculated simply
as diffa(r) = ra−rmin. When media describes dissimilarities between two groups, percentages or
ratios are often used to convey unfairness. The article about the COMPAS algorithm contains
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an example of this [Angwin et al., 2016]: “Black defendants were still 77 percent more likely
to be pegged as at higher risk of committing a future violent crime and 45 percent more likely
to be predicted to commit a future crime of any kind.” We have chosen to express the degree
of disparity in a similar manner because we perceive percentages to be intuitive to understand.
However, this also means that one should be aware that small absolute differences in the rates can
yield large relative differences. It is especially relevant if only a single subgroup has a weighted
misclassification rate of zero while the remaining groups have positive values. In that case, the
weighted misclassification quotient becomes very large and can blow up for the remaining groups.

BiasBalancer measures unfairness relative to the group with the most favorable rate value. This is
in contrast to other available tools where unfairness typically is calculated relative to a privileged
group specified by the user [Bellamy et al., 2019, Johnson et al., 2020, Bird et al., 2020, Saleiro
et al., 2019]. We have decided to always measure unfairness relative to the group with the most
favorable rate because this increases the interpretability since all calculated relative rates will be
non-negative. Moreover, there will be situations where the privileged group is unknown before
using the toolkit. Choosing the reference group in this way is not ideal when all groups have
similar rates, except for one group with a significantly lower rate. The ”outlier” group then
becomes the reference group, and the impression would be that all but one group receive unfair
predictions instead of the arguably more correct interpretation that the predictions favor the
outlier group over the remaining others. For this reason, the second-level visualization includes
both the actual rates and the derived relative rates to supplement the unfairness barometer. In
the unfairness barometer, we choose to show the maximum relative rate along with the color of
the corresponding sensitive group. We have chosen to highlight the group with the maximum
value because it increases the interpretation of the barometer. It depicts when a single group is
treated unfairly according to several measures, and it clarifies that the presented fairness criteria
seldom agree, which means we should be cautious when choosing a single criterion over another.
We think it is important to highlight the group with the most unfair predictions regardless of
the size of the group. Whenever a criterion is composed of two criteria, the mean of the value
for each criterion is used. The barometer shows this using colored stripes of the bars. We made
this choice to showcase that not only can the different criteria disagree, but a single criterion,
dependent on two rates, can also point toward disfavoring of different groups.

BiasBalancer does not include any tools for mitigating potential unfairness found in the predic-
tions made by the predictive algorithm because mitigation algorithms were outside the scope
of this thesis and because many of the existing fairness toolkits already include a large suite of
mitigation algorithms [Bird et al., 2020,Bellamy et al., 2019].

Fairness in machine learning is a relatively new and very active field of research. Because of
this, several different terms are used in articles to describe the same concept, and some fairness
definitions vary slightly from author to author. We have chosen to use the terminology in the book
Fairness and Machine Learning [Barocas et al., 2019] for both this report and in BiasBalancer.
This relatively new book written by prominent researchers within the field covers a wide range
of fairness concepts. It gathers existing material and is a useful reference for those interested in
fairness in machine learning.
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6.2 Limitations

All fairness criteria in BiasBalancer are based on the assumption that the provided labels rep-
resent the ground truth and are fair. This will not be the case in many datasets since labels are
prone to simple errors, possibly reflect historical biases in society, and can be a poorly chosen
proxy for the outcome of interest. If the assumption of correct and fair labels is not satisfied,
the results from BiasBalancer are likely to be flawed or even completely misleading. Domain
knowledge and knowledge of how the data is collected is needed to correct erroneous labels and
hence cannot be performed using any general-purpose tool, including BiasBalancer. Therefore,
it is important to assess the validity of the labels before using BiasBalancer, especially when the
algorithms are used in the real world.

When using BiasBalancer, care needs to be taken when the dataset consists of few observations
or when the dataset includes sensitive groups with few observations. Just like in other analyses
of data with limited observations, events can occur by chance. For this reason, the visualizations
and data output from BiasBalancer contain confidence intervals when possible. These confidence
intervals are calculated under the assumption of independent observations. When this assump-
tion does not hold, the true confidence intervals are at least as wide as the ones produced by
BiasBalancer.

The unfairness barometer in BiasBalancer only includes observational fairness criteria, also called
group fairness or statistical measures, and the section 2.2.6 motivates this choice. Including only
observational fairness criteria in the unfairness barometer naturally comes with limitations. Ob-
servational fairness criteria only depend on the joint distribution of the predictions, sensitive at-
tributes, true labels, and the data features used for classification. However, this joint distribution
typically does not contain all knowledge available in a given context, and hence observational
fairness criteria assess the fairness of the predictive algorithm based on limited information.
There are examples of scenarios with an identical joint distribution where one could be fair while
the other would be unfair due to different causal structures in the data [Barocas et al., 2019, p.
57-61].

BiasBalancer makes it easier to make nuanced and comprehensive analyses of unfairness in a
predictive model. However, the analysis from the tool cannot and should not stand alone.
Building fair predictive algorithms is not a straightforward task, and many considerations have to
be taken into account. Therefore, fair machine learning is difficult to achieve when only including
model developers with mathematical or computer science backgrounds in the process. [Binns,
2017] writes about relevant lessons from political philosophy in the context of fair machine
learning, and it is inevitable that the road to fairer algorithms not only includes the model
developers. In the process, we also need to include individuals with extensive knowledge of the
domain in question, sociologists, philosophers, or others with knowledge of the workings of ethics,
discrimination, and the effects of the algorithmic predictions on individuals. We also can not
rely on companies to make fairness the top priority and therefore need legislation ensuring that
algorithms meet some commonly agreed upon standards.
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6.3 Outlook

BiasBalancer currently only includes observational fairness criteria, and it could be beneficial to
integrate other types of fairness definitions, such as individual or causal fairness criteria, into
the toolkit. This would greatly improve the toolkit because it could further broaden the fairness
analysis obtained using BiasBalancer. It could also be interesting to extend BiasBalancer such
that it can aid the user in finding appropriate mitigation techniques for any potentially found
unfairness. Care should be taken to ensure that such an extension does not facilitate ”automated”
fairness analyses and mitigation but instead require the user to think carefully about which kind
of unfairness needs mitigation and which mitigation technique is best suited for the task.

The analysis performed by BiasBalancer is constrained to only look for unfairness across the
sensitive attribute specified by the user. Algorithms for finding subgroups receiving unfavor-
able predictions based on some fairness metric exist, and incorporating such an algorithm into
BiasBalancer to find relevant sensitive attributes could improve the tool [Zhang and Neill, 2016].

In this thesis, we have showcased and tested BiasBalancer on a wide variety of predictive al-
gorithms. Using BiasBalancer in practice generated many ideas for improving the toolkit, and
these ideas were added to the toolkit along the way. Using BiasBalancer on other algorithms,
using different sensitive groups, or constructing synthetic data designed to test the toolkit could
generate new ideas for improvement. A concrete idea of such improvement is to address the
exploding relative rates if a single subgroup has a value of zero in one of the rates. To alleviate
this issue, one could consider the idea of adding a threshold for when the absolute rates become
so small that they should not be a concern. However, choosing a suitable threshold would require
collaboration with, e.g., a philosopher and someone with domain knowledge.
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Chapter 7

Conclusion

In this report, we presented the Python toolkit BiasBalancer used for making nuanced and
comprehensive fairness analyses of predictive algorithms for binary classification problems. Bi-
asBalancer creates a fairness analysis in three levels, where each level increasingly nuances the
fairness analysis. The first level calculates the proposed fairness metric weighted misclassifica-
tion quotient, which allows for a unified assessment of unfairness, taking the severity of false
positives relative to false negatives into account. The second level visualization gives a compre-
hensive overview of disparities across sensitive groups, including a barometer showing violations
of several fairness criteria. The third-level methods enable further investigation into potential un-
fairness identified in level two. The use of BiasBalancer was showcased on four example datasets,
including canonical fairness datasets concerning predictions of credit score and risk of recidivism.

The medical case study consisted of an in-depth fairness analysis of a deep convolutional neural
network, which we built and optimized without taking fairness considerations into account. The
prediction network was trained to predict the presence of the heart condition cardiomegaly in
chest radiographs from the CheXpert dataset. The fairness analysis using BiasBalancer showed
no indications of unfair predictions with respect to sex. When considering race, the fairness
analysis using BiasBalancer suggested unfair treatment of both Whites and Blacks depending
on the fairness criterion used. This fairness analysis demonstrated how different fairness criteria
potentially lead to different conclusions and showed how BiasBalancer helped uncover all these
conclusions.

Central fairness criteria are mutually exclusive under common conditions, which means opti-
mizing to satisfy one criterion can exacerbate unfairness according to another. BiasBalancer
facilitates nuanced fairness analyses taking several fairness criteria into account, thereby en-
abling the user to get a fuller overview of the potential interactions between the criteria. Fair
machine learning is a new and fast-developing research area, which means performing fairness
analyses can be a daunting challenge for model developers. The level structure of BiasBalancer
makes fairness analysis more accessible for model developers by guiding the user into increasingly
complex analyses. We hope BiasBalancer can make fairness analyses based on more than a single
criterion more accessible for model developers and thereby encourage the use of such detailed
fairness analyses.
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Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
(2019). PyTorch: An imperative style, high-performance deep learning library. Advances in
Neural Information Processing Systems, 32(NeurIPS).

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É. (2011). Scikit-learn: Machine
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Appendix A

Appendix

A.1 Derivation of Normalization Constant

The weighted misclassification rate forms the basis for our developed fairness measure: weighted
misclassification ratio. The weighted misclassification rate is defined as

WMR = c(wFP) ⋅
wFPFP + (1 − wFP)FN

n , (A.1)

where c(wFP) is the normalization constant which will be derived in this section, wFP the false
positive weight, FP the number of false positives, FN the number of false negatives, and n the
total number of observations. The normalization constant is defined such that the weighted
misclassification rate fulfills the following two criteria:

1. WMR reduces to the misclassification rate when wFP = 0.5.

2. WMR ∈ [0, 1].
3. For all wFP ∈ [0, 1], WMR uses entire span of [0, 1]

The misclassification rate is defined as MR =
FP+FN

n
. Inserting wFP = 0.5, the first criterion is

satisfied when

c(0.5) ⋅ 0.5FP + 0.5FN
n =

FP + FN
n ⇔ c(0.5) = 2 (A.2)

The second criterion limits the domain of WMR to the interval [0, 1]. The non-negativity is
ensured by having c(wFP) ≥ 0 for all wFP ∈ [0, 1]. Next task is to ensure that WMR ≤ 1 at all
times. It is noted that the weighted misclassification rate attains the largest values when either
FP = n and wFP is large or when FN = n and wFP is small. These two scenarios give rise to
the following equations:

WMR = c(wFP)
wFPn + (1 − wFP) ⋅ 0

n = c(wFP)wFP ≤ 1 (A.3)

WMR = c(wFP)
wFP ⋅ 0 + (1 − wFP)n

n = c(wFP)(1 − wFP) ≤ 1 (A.4)
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Hence, to ensure that WMR ≤ 1, the normalization constant must satisfy c(wFP) ≤ 1
wFP

and

c(wFP) ≤ 1
1−wFP

. Furthermore, it is seen that when wFP = 0.5, then 1
wFP

=
1

1−wFP
= 2, which

satisfies the first criterion. Hence the normalization constant is defined as

c(wFP) = min ( 1
wFP

,
1

1 − wFP
) . (A.5)

The third criterion says that regardless of the value of wFP, the WMR should be able to take on
values in the entire range of [0, 1]. The perfect classifier will yield WMR = 0 irregardless of wFP

since FP = FN = 0. Without loss of generality assume that wFP > 0.5 such that c(wFP) = 1
wFP

.

By letting FP = n and FN = 0, the WMR is

WMR =
1

wFP
⋅

wFP ⋅ n + (1 − wFP) ⋅ 0
n = 1 (A.6)

Hence, the WMR can take on values in the entire span of [0, 1], and the choice of the normal-
ization constant also satisfies the third criterion.

A.2 Additional Tables and Figures

A.2.1 Example Datasets

FPR FNR FDR FOR
0.0

0.2

0.4

0.6

0.8

1.0
Group rates

African-American
Caucasian

0% 20% 40% 60% 80% 100%

FPR balance
Separation

Independence
Equal opportunity

WMR balance
Sufficiency

Predictive parity

Unfairness barometer

One Discriminated Group
Two Discriminated Groups
Unfairness <20%

0% 20% 40% 60% 80% 100%

WMR
FPR
FNR
FDR
FOR

Relative rates
COMPAS: Decile scores

Figure A.1: The BiasBalancer second level visualization of the COMPAS decile scores
with wFP = 0.9.
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Table A.1: List of attributes used for modeling recidivism of Catalan juveniles. The English
attribute names can be linked to the original attribute using the number in front of each variable.
Each attribute is described, and the domain of the attribute in the processed dataset is listed.
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Dataset Fold Train size Val size Test size N layers Lr P dropout N hidden

German Credit 0 640 160 200 2 0.010 0.4 (20, 5, )

German Credit 1 640 160 200 2 0.001 0.0 (20, 10, )

German Credit 2 640 160 200 3 0.001 0.0 (5, 15, 20)

German Credit 3 640 160 200 1 0.010 0.1 (15, , )

German Credit 4 640 160 200 3 0.001 0.2 (10, 15, 15)

Taiwanese Credit 19200 4800 6000 3 0.001 0.0 (15, 5, 5)

Catalan Recidivism 0 2976 745 931 3 0.001 0.0 (5, 20, 20)

Catalan Recidivism 1 2976 745 931 1 0.001 0.0 (15, , )

Catalan Recidivism 2 2977 745 930 2 0.001 0.1 (10, 20, )

Catalan Recidivism 3 2977 745 930 1 0.001 0.0 (10, , )

Catalan Recidivism 4 2977 745 930 2 0.001 0.0 (10, 15, )

Table A.2: Train size, val size, and test size specify the size of the train, validation, and test
datasets, respectively. N layers denotes the number of hidden layers, lr the learning rate, p
dropout the chosen dropout probability, and finally N hidden is the number of hidden units in
each of the hidden layers.
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A.2.2 CheXpert Case Study
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Figure A.2: Confusion matrix for each subgroup from the third level of BiasBalancer used to
analyze the fairness of the predictions of cardiomegaly from DenseNet w.r.t. race.
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Sensitive Attribute Group Split N Has Cardiomegaly CI

test 3857 446 (11.56%) [10.59%, 12.61%]
Asian

train 12372 1589 (12.84%) [12.27%, 13.44%]

test 1956 364 (18.61%) [16.95%, 20.40%]
Black

train 6653 1321 (19.86%) [18.91%, 20.83%]

test 9744 1137 (11.67%) [11.05%, 12.32%]
Other

train 34378 4028 (11.72%) [11.38%, 12.06%]

test 21975 2446 (11.13%) [10.72%, 11.55%]

Race

White
train 68694 8183 (11.91%) [11.67%, 12.16%]

test 1681 195 (11.60%) [10.16%, 13.22%]
Asian Female

train 5457 662 (12.13%) [11.29%, 13.02%]

test 2176 251 (11.53%) [10.26%, 12.95%]
Asian Male

train 6915 927 (13.41%) [12.62%, 14.23%]

test 1069 237 (22.17%) [19.78%, 24.76%]
Black Female

train 3323 690 (20.76%) [19.42%, 22.18%]

test 887 127 (14.32%) [12.17%, 16.78%]
Black Male

train 3330 631 (18.95%) [17.65%, 20.32%]

test 3986 494 (12.39%) [11.41%, 13.45%]
Other Female

train 14208 1658 (11.67%) [11.15%, 12.21%]

test 5758 643 (11.17%) [10.38%, 12.01%]
Other Male

train 20170 2370 (11.75%) [11.31%, 12.20%]

test 8896 929 (10.44%) [9.82%, 11.10%]
White Female

train 27822 2777 (9.98%) [9.63%, 10.34%]

test 13079 1517 (11.60%) [11.06%, 12.16%]

Race and Sex

White Male
train 40872 5406 (13.23%) [12.90%, 13.56%]

test 15632 1855 (11.87%) [11.37%, 12.38%]
Female

train 50810 5787 (11.39%) [11.12%, 11.67%]

test 21900 2538 (11.59%) [11.17%, 12.02%]
Sex

Male
train 71287 9334 (13.09%) [12.85%, 13.34%]

Table A.3: The table shows the prevalence and number of observations in test and training data
for each of the three chosen sensitive attributes.

A.3 BiasBalancer Documentation

The documentation of BiasBalancer has been created using Spinx version 4.3.2 and is accessed
through the Github repository, where the Readme file contains a link to the documentation. A
screenshot of part of the documentation is seen in figure A.3.
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Figure A.3: Screenshot from BiasBalancer documentation [Fuglsang-Damgaard and Zinck, 2022].
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